
October 16, 2001

UPI— Commands1

Contents

1 Keywords 1
1.1 Physical Parameters . 2
1.2 Sampling Parameters . 4
1.3 Expectations . 5
1.4 Debugging Support . 7
1.5 Restart files . 7
1.6 Drivers . 8

2 File Naming convention: 10

3 Data file formats 11

4 Results 11
4.1 Observables . 11
4.2 Other result files . 12

5 Analysis tools 12
5.1 gofr . 12
5.2 coself . 13
This file describes the keywords (lines) which may appear in the input file (.sy

file) of UPI , the Universal Path Integral code2. Order of keywords in this file is
sometimes important. Accordingly, we try to list them here in the appropriate
order. An alphabetical index is included at the end.

Comments in the input file start with an exclamation mark and end with the
end of line.

1 Keywords

We use the following typographic conventions:

• Keywords appear boldface, parameters in typewriter style

• variables are enclosed in 〈brackets〉

• optional parts are enclosed in [square brackets]

• (parentheses) group specifications together; they are also used in implicit for
loops like (ell(i),i=1,ndim) which expands to ell(1) ...ell(ndim)

• alternative specifications are separated by a vertical bar |
1David Ceperley (ceperley@uiuc.edu)
2The current version is: upi10l

1

• triple dots (. . .) allow for (multiple) repetition of last parameter/parameter
group

None of these specifications must appear in the actual input file. Parameters are
parsed from the input file in the subroutine pimc/spara.f.

We divide the parameters into several categories: physical parameters, sampling
parameters, commands to compute expectations, and computer related commands.
Finally we list the drivers: those commands that cause the execution of the random
walk or related actions. The parameters are divided from the commands by the
RESTART parameter.

A successful setup of the system file for PUPI not only requires putting in the
necessary keywords, they must also appear in the correct order. The relative se-
quence of keywords is not important, sometimes, however, common sense is needed:
for example, LABEL should be used after the corresponding SYSTEM, POT should be
used after TYPE, etc.

1.1 Physical Parameters

This section describes the “physics” parameters; those that describe the physical
system to be simulated.

NSLICES <int nslices> – required
sets the number of time slices into which the path is divided along the τ -
direction.

UNITS <string*8 eunit> <string*8 lunit> – optional
specifies energy and length units used for output labelling; These parameters
do not change any numbers.

ENORM <float enorm>
specifies normalization constant for energy; the total energy will be divided
by this constant for output; is usually equal to the number of particles or
molecules.
default value: enorm= 1. This corresponds to the total energy being output
(instead of energy/particle.)

BOXSIZE (〈float ell(i)〉,i=1,〈ndim〉) – required
specifies the size of the periodic box in the 〈ndim〉 dimensions; If you do
not want periodic boundary conditions then you can either make the box
quite large (but that will have implications for the g(r) function), or you can
comment out the periodic boundary conditions in the file pbc.cm. 〈ndim〉 is
set in upi.p;

BETA <float beta> – required
sets the value of the inverse temperature β = 1

kBT
(units specified by UNITS

statement). One step in imaginary time is then: τ = β/〈nslices〉

NREF <int nrefpt>
specifies number of reference points (used only for fermions):

2

0 ground state nodes
1 one reference point
2 two symmetrically positioned points in imaginary time

default value: nrefpt= 2

TYPE 〈string name〉 〈int nspins〉 〈int number〉 〈float hbs2m〉 (〈int
nppss〉(i),i=1,〈nspins〉) 〈string fname〉 [〈float charge〉] – required
Defines a new type of particle, named name. One must have a TYPE command
for each species of particles.
number is the number of particles of this type.
nspins gives the number of spin degrees of freedom:

nspins= −1 distinguishable particles
nspins= 0 bosons
nspins> 0 fermions with spin degeneracy of nspins

the number of particles with given spin will be nppss

hbs2m defines h̄2/2m for this particle; hbs2m= 0 denotes a fixed particle.
The file fname contains the initial starting positions. If fname starts with a
‘+’, aged configurations will be assumed.
charge gives the optional charge of the given species.
Default value: charge= 0

LINE 〈name〉 〈x1〉 〈y1〉 〈z1〉 [(〈x2〉 〈y2〉 〈z2〉) ...] – optional
defines line particles of a specific type name (like vortex lines).
The input are triplets (in 3d) or pairs (in 2d). The coordinates of the particles
are given as x y z. The number corresponding to the axis parallel to the
orientation of the line particle is replaced by the symbol ’|’ (the UNIX pipe).
Example: LINE vortex 0. 0. | represents a ’vortex’ particle which is a
line passing through the origin in the z direction.
The line particle must be parallel to one of the boxes axes.

PLANE 〈string name〉 〈int d1〉 〈float x1〉 [〈int dn〉 〈float xn〉 ...] –
optional
defines plane-like particles of a specific type name.
The input are pairs d x which specify the planes’ position in the following
way: The normals are in the d direction and the coordinate is x, where d is
an integer 1 ≤ d ≤ 〈ndim〉. The plane particle must be parallel to one of the
boxes axes.

POT PAIR <part1> <part2> <string filename> [<ntermact>
[<ntermeng>]] – optional
This uses a spherical interaction between the two given particle types; the
file, which contains potential and action tables, should have been created by
squarer. Without a POT PAIR command there will be no pair interaction.
The code saves space by using pointers to the data, thus if ‘filename’ appears
a second time, the data is not read in but the second pointer points to the first
location. This implies that the computed pair correlations are also grouped
together. The potential and action are assumed to be constant outside the

3

range of the table.ntermact and ntermeng are the number of off-diagonal
elements used in the evaluation of action and energy. Both are greater or
equal to 1.
Default values: ntermact= 3, ntermeng= 6.

POT EWALD <cutkn> <string filename>
(pimc/addpot.f; Adds a k-space pair potential. This command must be after
all TYPE commands. PUPI stops if more than one such command appears in
an input file (for a given system). cutkn is the k-space cutoff of the interaction.
If CUTK has already been called, this command over-rides it. A 5 dimensional
array is read from the given file. The indices are are respectively: k-vectors,
typea, typeb, levels and the last index is 1 for the potential, 2 for the action
and 3 for the beta derivative of the action.

NOLEAK turns off the leakage term in the action (ifleak=0.) With NOLEAK
paths are rejected only if they actually cross into the negative region of the
density matrix. Otherwise they are rejected also if they are close to a node.
NOLEAK will save time and be more robust but have a larger time-step error.
default is ifleak=1.

PTAIL
Shifts the pressure to account for the potential outside the cutoff. See also
VTAIL.

VTAIL
Shifts the potential (and hence the energy) to account for the potential
outside the cutoff and any other constant. See also PTAIL.

IFDIAG reads in the parameter ifdiag (default value 1) used in dmeval.f ifdiag is
the level at which the off-diagonal terms are used in the bisection method to
accept. ifdiag ≤ 0 means that offdiagonal terms are never used and hence this
overrides ntermact on the TYPE PAIR command. ifdiag=0 will be faster but
with a larger time step error. ifdiag 1 makes the time/step slower but in
principle could give higher acceptance ratios at the lower levels.

FIXNODE passes the fixed-node parameter ifixnd as the second argument. 1
indicates fixed-node, otherwise one uses exact fermions with signs. default is
ifixnd=1 .

1.2 Sampling Parameters

These parameters modify how the Metropolis random walk goes through path space.
Tuning the default parameters may result in a dramatic speed-up in convergence.

FREESAMP <string type1> <string type2> ... – optional
If present, use free particle sampling for the given particle types, otherwise

4

UPI/PUPI will use the sampling table. Free particle sampling is faster (per
step) and more reliable but correlated sampling can have a higher acceptance
ratio. Default is correlated sampling.

GAMMA 〈int nbpart〉 〈string type〉 〈float gamma(nbpart,itype)〉
sets probability values for the given particle type for commands which move
particles or do permutations (see section 1.6) The effect of gamma depends
on the particular driver (OMOVE, SELECT or PERMUTE). For details see
those sections. Default values for all particle types and numbers is 1. except
for fermions, in whose case permutations with even number of particles are
zeroed

DISPLACE 〈string type〉 〈float distance〉 [〈float gammad〉] – optional
sets parameter for global path moves performed by OMOVE, PERMUTE etc. The
entire chain is moved uniformly in a cube of side distance – not for fermions
or exchanging bosons.
gammad is the probability of attempting individual move For example is gam-
mad=0.1, on the average 1/10 of the particles will have a displace move at-
tempted after each pass. Displace moves are NSLICES/2**LEVELS more
expensive than OMOVES so one should be cautious in making too many DIS-
PLACE moves. However Displace moves are very good at shaking up an initial
configuration (say melting them from an initial configuration.) Default is not
to displace.

1.3 Expectations

What follows are commands that create additional averages, or in the case of
WRITEPC dump out path variables.

WRITEPC <int freq>
specifies the number of passes between writes to the compressed path file (.pc-
file). (variable is iwrc) This file can be read in by READPC or a movie made
by viewer. Each coordinate is packed into 2 bytes; hence the accuracy is 2**(-
17)*ell(l). Danger: enormous files can be quickly generated if iwrc is small.
Also the permutation is written. Default is to never write.

ADDKV 〈n〉 (〈rkadd(i)〉,i=1,n)
select additional k-vectors for which the structure factor S(k) is calculated.
This is similar to READKSHELLS. Useful for computing reciprocal lattice vectors
in a crystal.

AREA 〈string type〉
Computes the mean squared area of a path projected on the plane in the
direction given by the LINE projection. type is the type of particle for which
the area is computed. radius is used to find the rotating partition function
for the case of a vortex line. The mean squared area is needed to determine
the response of the system to an infinitesimal rotation about the axis (given
by the direction of the line particle.) The output are the scalars ’area2’ and
’moi’. See Eq. (3.26) in RMP.

5

CM 〈string type〉
Calculates diffusion constant of the center of mass for particles of the given
type. This creates a file 〈qid〉.dcm which gives the center of mass distri-
bution around the origin. Only appropriate for a cluster centered at the origin.

CUTK <float cutk>
specifies cutoff in k-space for S(k); it’s a good idea to use a relatively small
cutoff, as the computation is quite slow, and to obtain values of S(K) for large
K by a Fourier transformation of g(r)
This keyword is required for Ewald sums
CUTK makes any previously issued READKSHELL ineffective and vice versa
By default S(k) is not computed.

EFFMASS
calculates the single particle diffusion. A file 〈qid〉.em will be created. It
contains in the first column the imaginary time and in the following columns
the effective mass in the x,y,z and average for each type of particle.

FKT
Calculates the intermediate scattering function,

f(k, t) =
1

N
〈ρk(0)ρ−k(t)〉 (1)

Make sure that CUTK, resp. READKSHELLS precede this (as well as most other
commands). A file 〈qid〉.fkt will be created. It contains in the first column
the imaginary time and in the following columns the function for each shell of
k-vectors. The binary file 〈quid〉.bfkt contains the block averages only. One
uses the covariance program to calculate from the block average the covariance
in f(k, t) and do the maximum-entropy analysis.

READKSHELL 〈string filename〉
add vectors in k-space for which S(k) is calculated; the vectors/shells are read
in from a data file which can be generated by genshells.f; the format of this
data file is the following:
〈nshlls〉 〈nvects〉
and for each shell (〈ks〉≤〈nshlls〉):
〈mult〉
and then for each vector (〈i〉≤〈mult〉):
〈kcomp(1)〉 . . . 〈kcomp(ndim)〉
READKSHELL makes any previously issued CUTK ineffective and vice versa

LINDEM 〈string type〉, 〈string filename〉 computes the mean squared
deviation of particles from lattice sites The file can be the same as the .ic
file on the TYPE line, however then that file must be a perfect lattice. Note
we use centering vector to correct for any overall drift away from the lattice
sites. This assume translation invariance and no permutations. Also physical
exchange of paths will cause a slow increase in rsq. The mean squared
displacement is the average: ’deltar2’.

6

VWINDOW 〈integer virwin〉 [〈integer maxvirwin〉 [〈tw〉]] This command is
followed by 1 or 2 integers and possibly a real. The first (virwin) puts the
virwin’th value of the virial estimator onto the scalar averages for the total
energy (it appears as Evirial). The second integer (maxvirwin) (if present) cuts
off the computation after maxvirwin time values (to save time in anal.f). If
a third argument (tw) is present it will be the imaginary time and overwrite
virwin as with virwin = β/tw. (You can use the first if you change number
of timeslices but beware of truncation errors.)

1.4 Debugging Support

DEBUG <int idebug>
sets debug level (0 means no tests, 1 do some tests, 2 do many tests which
slows down execution considerably) The testing is primarly to see if the fermion
matrices and inverses are being correctly updated and shuffled around as per-
mutations are done.
The default value is idebug= 0

SEED 〈int iseed(1)〉 [〈int iseed(2)〉 [〈int iseed(3)〉]]
used to set the random number seed; as the generator uses 48 bit integers
two arguments are possible; the third argument, if given, overrides the default
prime adder
Default is to use the clock and possibly the processor number. The number
actually used is written out and the job can be rerun by using that as the seed.
(We need to replace by the sprng library).

TIMER <float tcheck>
specifies maximal time (in seconds) per block in PERMUTE etc. OMOVE and
SELECT. TIMER overrides the number of steps/block (actually the block is
over which ever occurs first.
default is to wait until all passes are done The second argument is the total
time of the run. f Unless there is enough time to finish another block it will
stop. The time is estimated either from tcheck or the time of the last block in
case tcheck is zero.

STOP sets the parameter nstop so that on the nstop entry into fdminit the code will
stop. Can be used in conjugtion with DEBUG to stop the code at a particular
step.

1.5 Restart files

Restart or check-pointing files are produced at the end of each block. The Restart
key-word separates the setup commands from the drivers.

RESTART [<string restarttype> [string filename]] – required
determines the restart properties (after interruption); NONE starts at the begin-
ning (first set, first block) with all averages set to zero; PARTIAL also restarts
at the beginning but reads in the path from the restart file instead of from
the initial coordinates on the file referenced by TYPE. Previous averages are

7

inte the restart file but are not used in PUPI. FULL continues with the block
following the last completed one, keeping the averages. The run after restart
should be exactly the same as if the run had not been stopped. further output
will be appended to the restart file (.rs) so that results obtained so far are
not lost
One can take a completed run and edit the input files either by adding addi-
tional blocks to the final block or by adding additional command lines.
Default value is NONE

1.6 Drivers

Each driver command starts a new set of blocks. Each block consists of several steps.
Expectation values are calculated in each block. They are then dumped together
with a cumulated sum over all blocks so far of this set and the corresponding average
per block to the output files. Comparing the results of different sets allows for studies
of relaxation to equilibrium or estimation of correlation.

The following arguments are common to the most important commands:

<nbblocks> gives the number of blocks per set; averages are reset at the beginning
of each set and after a RESTART PARTIAL; after each block a number of scalar
quantities is dumped onto the .out–file;

<steps/block> specifies the number of steps per block; the operations executed
in one step vary by command

<levels> determines the number of levels which are used for the multilevel rejec-
tion; the path is divided into 2levels segments in τ -space (1 would, for example,
use midpoint bisection only); 2levels should be smaller than the number of time
slices (NSLICES line)

OMOVE <int nbblocks> <int steps/block> <int levels>
samples over one–particle moves; for each step the following operations are
executed: first, an origin in τ space is picked out at random; then for each
particle a random number is drawn; if this number is less than the value of
GAMMA for 1-particle moves (of this particle type), a move for this particle
is attempted; then averages of the quantities of interest are determined A
pass consists an attempted move of all particles; after a pass we do analysis,
reference move, write out configurations and insertion, and a displacement.

SELECT 〈int nbblocks〉 〈int steps/block〉 〈int levels〉 〈int nhits〉
samples over permutations: a pass consists of nhits attempted moves; after
a pass we do analysis, reference move, write out configurations and insertion,
and a displacement At the beginning of a pass, from the set of all possible 1,2
and 3 particle moves is constructing a table of their probabilities based on the
free particle density matrix. These probabilites are multiplied by gamma so
the user can emphasis say 3 particle moves versus other moves.

PERMUTE 〈int nblocks〉 〈int nsteps〉 〈int levels〉 〈int nhits〉
The input is rather similar to SELECT but nhits and gamma must be cho-
sen differently. A pass consists of first randomly selecting a time interval,

8

constructing the table of pair distances, then making nhits attempted con-
structions of cyclic permutations. After a pass we do analysis, reference move,
write out configurations and insertion, and a displacement. If the parameter
TIMER is set, the block is finished when a certain amount of CPU time has
been used up.

PERMUTE differs from SELECT in that the permutation step is accepted or re-
jected before the call to the subroutine weave (where the path is constructed)
and that the cyclic permutation is constructed from a random walk through
label space instead of explicitly looking at all possible cyclic permutations.
This means that one can do longer permutation moves simply by increasing
the parameter mnmovers in upi.p. Currently PERMUTE is less robust than
SELECT in that the GAMMA parameters need to be chosen more carefully. Also
it uses many random numbers. One should continue to use SELECT, if the
permutation acceptance ratio is greater than .5.

NHITS should be set to a large value (of the order of (number of particles)2)
because many permutations are tried out before a successful one is found. One
can look at ”fraction of time in weave” (printed after each block in the output
file) to get some idea of the time spent constructing the path.

GAMMA parameters have a different meaning in PERMUTE and need to be
adjusted by hand.
GAMMA(1,itype) is used to select the type of particle to be moved: GAMMA(1, i)
is the probability that type i is moved. It is only used if 〈ntypes〉 > 1, when
we must have

∑
i GAMMA(1, i) = 1..

GAMMA(j, i) for j > 1 is the probability that we continue to construct per-
mutation cycles of length j or longer. The construction is cut off at cycle
length m, if GAMMA(m + 1, itype) = 0 or if m=mnmovers (set in upi.p). Hence
0 ≤ GAMMA(j, i) ≤ 1. It is important to allow for one-particle moves by spec-
ifying GAMMA(2, i) < 1.0 so that even in the case that permutation moves are
rarely accepted the system undergoes some changes.

Here is a typical setup for generating cycles of length 6 and less: (mnmovers= 6)

GAMMA 1 4HE 1.

GAMMA 2 4HE .98

GAMMA 3 4HE .95

GAMMA 4 4HE .8

GAMMA 5 4HE .8

GAMMA 6 4HE .8

Here is a fermion setup where only cycles of length 1, 3 and 5 are generated:

GAMMA 1 3HE 1. ! not really needed in one-component problems.

GAMMA 2 3HE .95 ! 5% of time try 1 particle moves.

GAMMA 3 3HE 1. ! no pair exchanges.

GAMMA 4 3HE .8 ! 20% of time try 3 particle moves.

9

GAMMA 5 3HE 1. ! no 4 particle exchanges.

GAMMA 6 3HE 0. ! no 6 or higher exchanges.

READPC 〈int nblock〉 [〈int nspb〉 [〈int levels〉 [〈string filename〉]]]
This is a driver. It reads packed file filename and compute energy
nblock gives the number of statistical blocks, nspb the number of steps/block,
and levels the time step level. One can use it to compute how the energies
depend on the time step, the number of levels of the action etc. with the same
paths. The systematic error will be evident even when the statistical errors
are larger.

Default values are: nspb= 1, levels= 1 and filename= run identification
with extension .pc

TESTER 〈int islices〉 〈float dx〉 〈int tol〉
is a driver which calculates the gradients to make sure that they are consistent
with the action. It compares the analytic gradients with those determined
from finite differences. islices gives the number of slices tested,
dx specifies how far the coordinates are displaced (recommended value: .0001),
and
tol controls the printout (only errors greater than tol are printed)

Printouts are now on 〈qid〉.ts TESTER is slow! But it should be done for a
new project, after changes in underlying codes, on new machines etc. Make
sure that tester is given a typical configuration to analyze, not the perfect
crystal with the identity permutation.

If TESTER fails, one should break the action into short range long-range and
ewald and try to trace where the error is coming from. TESTER only determines,
if the action is consistent with the gradient both computed within pairact.
It does not know whether the action in pairact is the same as that in weave.
But this is what the correctness of the virial energy estimator depends on.

2 File Naming convention:

• .cm common block (a file included in many routines)

• .dm is a density matrix file containing everything having to do with a pair
interaction

• .f fortran source routine

• .ic data file containing input coordinates (just coordinates at one time slice)

• .os diagnostics generated by setup program

• .p parameters to dimension variables (included in fortran source)

• .pc packed configuration file = unit 90

• .sc scalar averages (time history) =unit 62 Source files:

10

• fnlib.f : ’library’ files (do not depend on .p files)

• *set.f : sources which produce .sy input for various problems

Fixed files produced or required by PUPI:

• qid.sy : system file:sets up system and wavefunction

• qid.out: output of PUPI (unit 6)

• qid.dcm: center of mass distribution (see CM)

• qid.sc : scalar averages

• qid.mm : maximum memory used (unit 77)

• qid.gv : ρ(k)

• Error messages are written to unit * (not true in PUPI?)

3 Data file formats

A data file consists of a number of tensors. Two keywords must be present before
each tensor: RANK and BEGIN.

1. RANK – required
This command gives the rank of the next tensor and all of its dimensions.
RANK 〈nrank〉 〈n1〉 . . . 〈n〈nrank〉〉

2. BEGIN [〈informative labelling possible〉]
Data starts in the record following the BEGIN. There must be exactly n1 ∗n2 ∗
. . . ∗ nnrank floating numbers.

3. CGRID 〈integer dimension〉 (string 〈cvalues(i)〉,i=1,n〈dimension〉)
specifies character labeling of the values in the specified dimension

4. LABEL dimension value gives an overall label to a given dimension

5. SIZE SIZE indicies minimum maximum specifies that x(indices) are between
min and max

4 Results

4.1 Observables

For each block a certain number of observables are calculated. Their values will be
written onto the output file (.out) and in the restart file (.rs) (in binary format,
not human-readable).

11

dfree 〈type〉 〈dir〉 Gives the free energy change in applying antiperiodic boundary
conditions in the x,y and z directions. This can be used to estimate the
boson lambda transition temperature as in the paper Pollock and Runge, PRB,
46,3535 (1992). The average number of even windings minus the odd windings
is printed out. One has to average the x,y,z components (for a cube). Then

∆F = −kBT log(dfree) (2)

D the “diffusion constant” which is defined as (∆r)2/(CPU time). This can be used
to optimize levels or to turn on or off FREESAMP. It does not have physical sig-
nificance but is only a measure of how quickly (in CPU time) the random walk
is diffusing through path space. The definition allows one to compare differ-
ent temperature and τ values as well but its value will depend on computer,
compiler etc. Similarly DP which measures the diffusion through permutation
space. =total number of changes/time. a pair permutation counts 2, a triplet
3 etc.

4.2 Other result files

.bfkt Binary file containing information about the intermediate scattering function
f(k, t). (see FKT)

.dcm Distribution of center of mass around the origin. See CM.

.em Effective mass. See EFFMASS

.fkt Intermediate scattering function f(k, t) (see FKT)

.grr Two-particle correlation function g(r) in a format which can be read in by
data plotting programs. First column: particle distance r, second, fourth,
. . . column g(r) for given particle type combination.

.ev The virial estimate of the energy. The virial estimator changes the spring term
to spread it out across the number of levels, not over the whole nslices. What
comes out is the energy versus the time ’window’, window=1 is the usual
estimator. window=nslices is the maximal. the second the first column is
window time, the second the energy, the third the error bars. The fact that it
is constant with respect to the error bars is a good test that convergance has
been achieved and that the derivatives are correctly computed.

.sk Structure function S(k). You have to specify CUTK or similar in order to obtain
this file.

5 Analysis tools

5.1 gofr

Computes simultaneous values of g(r) and s(k) (in 3d only) for extending g(r) and
s(k).

12

5.2 coself

coself performs a maximum entropy analysis. It needs one or more binary .bfkt

files as input. After giving the prefix the program reads the binary file and outputs
the number of time slices over 2, ntimes, the number of k-shells, nlamb, τ , β, and
the number of time slices, nslices.

You have to enter the number of energy levels whose positions are to be adjusted,
nvary, the total number of energy levels, ne, and the minimum and maximum value
of energy.

The program will then perform the maximum entropy analysis according to the
model chosen (in the code) (see http://www.ncsa.uiuc.edu/Apps/CMP/papers/

bon96a/bon96a.html). The main output file ist ftn12 (fortran output unit 12 –
actual name is machine dependent). It contains the vectors of the k-shells. ’Fixed
spectral density ne=’ gives the number of fixed energy levels, h̄ω. Then a list follows
which gives S(k, ω) for every energy value (first column: energy, then S(k, ω) for
every k.)

13

