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Abstract: The diagonalisation of a Hamiltonian by constrained minimisation
techniques is discussed. The minimisation is carried out by the conjugate gradient

method. The conjugacy criterion is derived for the unconstrained case. The errors
introduced by the constrains are also emphasised.

Minimisation Methods: The Hamiltonian can be diagonalised by iterative min-
imisation schemes such as “conjugate gradient”. This is inspired by the fact that, of
the set of all normalised vectors, the one which minimises the expectation value of
the Hamiltonian (i.e. the energy) is the ground state eigen-vector.
The minimising (normalised) vector |ϕ〉, can always be written as some linear

combination of the eigen-states {|ψi〉}, hence the expectation value of the Hamil-
tonian is some combination of the eigen-values and has the minimum value when
|ϕ〉 is a combination of only the eigen-sates corresponding to the lowest eigenvalue.
Mathematically,

|ϕ〉 =
∑

i

ai|ψi〉,
∑

i

|ai|2 = 1

The expectation value of the Hamiltonian between the state |ϕ〉 is

〈ϕ|H|ϕ〉 =
∑

i

a?
i ai〈ψi|H|ψi〉 =

∑

i

|ai|2λi〈ψi|ψi〉 =
∑

i

λi|ai|2

This is minimum when only the lowest state is present, since the presence of any other
state increases the energy. Hence, in the absence of degeneracy, the ground state wave
function minimises the energy.
So, the problem of finding the lowest eigen-state becomes one of minimising the

expectation value of the Hamiltonian subject to the constraint of normalisation of
the eigen-state. Once the lowest eigen-state has been determined, if the energy is
minimised again under an additional constraint that the minimising vector be or-
thogonal to the already determined lowest eigen-state (since the eigen-states of a
hermitian operator corresponding to different eigen-values are orthogonal), the eigen-
vector corresponding to the next higher eigen-value will be determined (neglecting
degeneracies). In this way, all the higher states could be obtained.
The “conjugate gradient” minimisation scheme is well suited for constrained mul-

tivariate minimisation, which is the task at hand.

Steepest-Descent: The process of determining the i-th eigen-vector, with all the
lower eigen-vectors already determined, involves the minimisation of the expectation
value of the Hamiltonian under the constraint that the minimising vector is normalised
( orthogonality constraints will be explicitly treated later). Thus,

E[|ψi〉] = 〈ψi|H|ψi〉, under the constraint 〈ψi|ψi〉 = 1

where |ψi〉 is the i-th eigenvector or band. The constraint equation is included by
a Lagrangian multiplier λ, which constraints the solution to be on the surface of an
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N-dimensional sphere of unit radius.

L = 〈ψi|(H − λI)|ψi〉

The iteration scheme starts with an arbitrary point on the sphere, i.e. with a
starting vector |ψ0

i 〉 of unit norm1. The first step is to move in the direction in which
the decreased of the function E[|ψm

i 〉] is fastest. Here, m denotes the iteration index.
This is the direction of steepest-descent and is determined by the negative gradient of
the function at that point on the sphere (since the increase of the function is fastest
in the direction of the gradient).
The steepest-descent direction for the i-th band at the m-th iteration step is thus

given by the negative gradient of L

|ζm
i 〉 = −(H − λI)|ψm

i 〉

Now, this vector should be such that when we start moving from the tip of the starting
vector, we are still on the surface of the N-dimensional sphere, so that the constraint
is obeyed. Hence, |ζm

i 〉 must be orthogonal to |ψm
i 〉. This determines the Lagrangian

multiplier for that iteration step2.

λm
i = 〈ψm

i |H|ψm
i 〉

i.e. the best guess for the eigen-value at that point. This value, also called the Ritz

value is a function of the approximate eigen-vector |ψm
i 〉.

Orthogonality Constraint: The minimisation of the energy corresponding to the
i-th band is under an additional constraint of orthogonality to all the lower bands.
Hence, the search direction, which is constructed from the steepest-descent vector,
should be orthogonalised to all the lower bands, as otherwise it would add some
components along directions forbidden by the constraint. This is done by the Gram-
Schmidt orthogonalisation

|ζ ′mi 〉 = |ζm
i 〉 −

∑

j<i

〈ψj |ζm
i 〉|ψj〉

Since the lower bands |ψj〉,∀ j < i have been determined, they do not have any
iteration index. Its evident that 〈ψm

i | ζ ′mi 〉 = 0.

Preconditioning: If exact arithmetic is used, the number of iterations taken by
the conjugate gradient method to reach the solution of the unconstrained minimisation
problem is equal3 to the number of distinct eigen-values of H, i.e. a highly degenerate
problem converges faster. Thus, if the original system is replaced by an equivalent
system, in which the matrix has many unit eigen-values, i.e. the condition number is as
small as possible, a faster convergence can be achieved. The idea of preconditioning is
to construct a transformation to have this effect onH, which is essentially constructing
the inverse of H . However, the evaluation if the inverse is essentially solving the whole
problem, so some inexpensive approximations have to be found.
To this effect, we observe that each iteration will reduce the magnitude of the

steepest-descent vector which is a measure of the error in the eigen-state, vanishing at
1This vector is of course orthogonalised against all the lower and already determined bands.
2Set 〈ψm

i |ζ
m
i 〉 equal to zero and solve for λ.

3This will be motivated later
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the solution. If the steepest-descent vector was just a scalar multiple of the error, then
moving the correct distance along the steepest descent direction would completely
eliminate the error in the eigen-state.
The relationship between the error in the eigen-state |δψm

i 〉 , and the steepest-
descent direction |ζm

i 〉 is demonstrated by a simple expansion of the error in the basis
of the eigen-states of the Hamiltonian

|δψm
i 〉 =

∑

j

ci,j |ψj〉

Of course, by definition |ψi〉 = |ψm
i 〉+|δψm

i 〉. Substituting this |ψm
i 〉 into the steepest-

descent vector we get

|ζm
i 〉 = −(H − λm

i I)|ψi〉+ (H − λm
i I)|δψm

i 〉

Near the solution, the norm of the first term is much smaller than the second term[5],
and hence can be neglected. So we have

| ζm
i 〉 = (H − λm

i I)
∑

j

ci,j | ψj〉

=
∑

j

(λj − λm
i )ci,j | ψj〉

It is observed that the steepest-descent vector is a scalar multiple of the error

PSfrag replacements

O |ψi〉

|ψmi 〉

|δψmi 〉

|ζmi 〉

|1〉

|2〉

|δψm
i 〉 if the Hamiltonian is n-fold degenerate, i.e. λj = λ, ∀j = 1 . . . n. Thus, a The error in the eigen-state

for a 2× 2 casepreconditioned Hamiltonian with an increased degeneracy will converge faster.
We know that two matrices related by a similarity transformation have the same

set of eigen-values4, hence preconditioning can be achieved by a similarity transfor-
mation of the Hamiltonian which makes the system highly degenerate. Let us denote
G ≡ (H − λI), i.e. neglecting the wave-function dependence of the Ritz value. Then,
the minimisation problem reduces to solving

G|ψm
i 〉 ≡ −|ζm

i 〉 = 0

If K is a symmetric, positive-definite matrix, then we can replace the above system
by

KGK|Ψm
i 〉 = 0, with |ψm

i 〉 = K|Ψm
i 〉

Let R denote the matrix KGK; then R is related to K2G by a similarity transforma-
tion, i.e. KRK−1 = K2G. Since solving G|ψm

i 〉 = 0 is same as solving K2G|ψm
i 〉 = 0,

the whole problem transforms into minimising

L = 〈Ψi|R|Ψi〉, or solve R|Ψi〉 = 0

The matrix K, called the preconditioner should be chosen depending on the type of
the Hamiltonian being dealt with.
The broad eigen-value spectrum of the Kohn-Sham Hamiltonian in pseudopoten-

tial caluclations that use plane-wave basis sets is associated with the wide range of
energies of the basis states. The higher-energy states are dominated by the plane-wave
basis states whose kinetic energies are close to the eigen-value of the state. To make
these high-energy states degenerate, the inverse of the kinetic energy operator

4A Similarity Transformation is H ∼ AHA−1 where A is a non-singular matrix
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would be a good preconditioner. However, this does not hold for the lower-nergy
states, and hence the elements of the preconditioning matrix should become a con-
stant for the lower-energy states, rather than varying as the inverse of the kinetic
energy.
So to correct for the error in the steepset-descent vector, it is multiplied with a

preconditioning matrix K whose matrix elements are given by

Ki,j =
27 + 18x+ 12x2 + 8x3

27 + 18x+ 12x2 + 8x3 + 16x4
δij

where x is the ratio of the kinetic energy corresponding to that basis vector to the
total kinetic energy of that state |ψm

i 〉. The matrix elements Kij approach unity as
x→ 0, with zero first, second, and third derivatives. This ensures that the small wave-
vectors remain unchanged. Above x = 1, Kij asymptotically approach 1/[2(x − 1)]
with an asymptotic expansion correct to fourth order in 1/x.
For the transformed problem, the steepest-descent vector is thus given by

|ηm
i 〉 = −R|Ψm

i 〉 = −(KGK)K−1|ψm
i 〉 = K|ζ ′mi 〉

This preconditioning destroys the orthogonality constraint, and so this vector has
to be explicitely orthogonalised to all the lower bands and also the i-th band itself.

|η′mi 〉 = |ηm
i 〉 − 〈ψm

i |ηm
i 〉|ψm

i 〉 −
∑

j<i

〈ψj |ηm
i 〉|ψj〉

Conjugate Directions: After the initial step along the steepest-descent direc-
tion, the “Conjugate Gradient” method proceeds along the conjugate directions such
that the minimisation at each iteration is independent of the of the previous ones.
This is the condition for “conjugacy” [2]. These are generally derived for the uncon-
strained quadratic problem. For the case under consideration, the assumption of the
Lagrangian multiplier being independent makes the problem quadratic, however the
constraints make the problem highly non-linear. Progress is made by assuming that
the constraints do not significantly alter the conjugate directions. This point will be
discussed more in the next section.
In the problem thus far, |Ψm

i 〉 is an approximation of the vector correspond-
ing to the minimum of L. Consider a subspace of linearly independent vectors
|ϕ0

i 〉, |ϕ1
i 〉, . . . , |ϕm

i 〉 and let Φm
i be a matrix with columns |ϕ0

i 〉, |ϕ1
i 〉, . . . , |ϕm

i 〉. If
the next approximation of the minimum is obtained by moving from the present
approximation 5 over the manifold Ψm

i +Φ
m
i , then the solution is obtained by

min
w∈<m+1

L(|Ψm
i 〉+Φm

i |w〉)

Minimising this Lagrangian function with respect to |w〉 we obtain

|w〉 = (Φm†
i RΦm

i )
−1Φm†

i |η′mi 〉

where |η′mi 〉 = R|Ψm
i 〉 is the preconditioned and orthogonalised steepest-descent vec-

tor. Hence the next approximation to the preconditioned eigen-state is given by

|Ψm+1
i 〉 = |Ψm

i 〉+Φm
i (Φ

m†
i RΦm

i )
−1Φm†

i |η′mi 〉
5This will however be modified by the constraints
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The iterates in this procedure display several interesting properties. Firstly, |η ′mi 〉,
the preconditioned gradient at |Ψm+1

i 〉, is orthogonal to the vectors {|φm
i 〉}. Note

that

Φm†
i |ηm+1

i 〉 = −Φm†
i R|Ψm+1

i 〉
= Φm†

i |ηm
i 〉 − Φm†

i RΦm
i (Φ

m†
i RΦm

i )
−1Φm†

i |η′mi 〉
= 0

Therefore
〈η′m+1

i |ϕs
i 〉 = 0, s = 0, . . . ,m

Hence, if each previous iterate Ψs
i ,∀ s ≤ m, then by induction it follows

〈η′ri |ϕs
i 〉 = 0, r > s

Thus we get,
|Ψm+1

i 〉 = |Ψm
i 〉+ βΦm

i (Φ
m†
i RΦm

i )
−1|em〉

where |em〉 is the m-th column of the identity operator and β = 〈η′mi |ϕm
i 〉.

To simplify the situation, the matrix (Φm†
i RΦm

i )
−1 is constructed to be diagonal.

Also, each of the columns of Φm
i are chosen to be conjugate with respect to the matrix

R, i.e.
〈ϕr

i |R|ϕs
i 〉 = 0, r 6= s

When this holds,
|Ψm+1

i 〉 = |Ψm
i 〉+ αm|ϕm

i 〉
with αm = 〈η′mi |ϕm

i 〉/〈ϕm
i |R|ϕm

i 〉. This is the step to the minimum for the uncon-
strained problem, however this is not used under the orthogonality constraints.
From the definitions we find that

|η′m+1
i 〉 − |η′mi 〉 = −R(|Ψm+1

i 〉 − |Ψm
i 〉) = −αmR|ϕm

i 〉

Let |ym
i 〉 denote the vector |ηm+1

i 〉−|ηm
i 〉. Hence the conjugacy condition 〈ϕr

i |R|ϕs
i 〉 =

0 is equivalent to the orthogonality condition 〈yr
i |ϕs

i 〉 = 0.
A set of mutually conjugate directions can be ontained by taking |ϕ0

i 〉 as the
steepest-descent direction |η′mi 〉 and computing each subsequent direction as a linear
combination of |η′mi 〉 and the previous m search directions

|ϕm
i 〉 = |η′mi 〉+

m−1
∑

j=0

γmj
i |ϕj

i 〉

All the components of the previous equation are linear combinations of {|ϕm
i 〉} and

with |ϕ0
i 〉 = |η′0i 〉 it holds trivially

〈η′mi |η′ni 〉 = 0, n < m

Moreover, |ϕm
i 〉 can be constructed to be conjugate to {|ϕs

i 〉} ∀ s < m. Thus premul-
tiplying |ϕm

i 〉 with 〈ϕn
i |R (note R is symmetric) we obtain for n = 0, . . . ,m− 1

〈ϕn
i |R|ϕm

i 〉 = 〈ϕn
i |R|η′mi 〉+

m−1
∑

j=0

γmj
i 〈ϕn

i |R|ϕj
i 〉

= − 1

αm
〈ym

i |η′mi 〉+ γmn
i 〈ϕn

i |R|ϕn
i 〉
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The orthogonality of the |η′mi 〉s implies that the first term vanishes for all n < m− 1,
thus from the conjugacy condition we have γmn

i = 0, ∀ n < m − 1. Thus only
the coefficient γm,m−1

i ≡ γm−1
i is non-zero. Hence, the value of γm−1

i that ensures
that |ϕm

i 〉 is conjugate to |ϕm−1
i 〉, we premultiply |ϕm

i 〉 by 〈ym−1
i | and apply the

orhtogonality condition that 〈ym−1
i |ϕm

i 〉 = 0; this gives[2]

0 = 〈ym−1
i |η′mi 〉+ γm−1

i 〈ym−1
i |ϕm−1

i 〉

γm−1
i = − 〈ym−1

i |η′mi 〉
〈ym−1

i |ϕm−1
i 〉

(1)

Hence, the conjugate-gradient direction is constructed out of the steepest-descent
direction as indicated above

|ϕm
i 〉 = |η′mi 〉+ γm−1

i |ϕm−1
i 〉

where γm−1
i is given as above, and γ1

i = 0, which means that the first step is along
the regular steepest-descent direction, but then on its along the conjugate direction
constructed as above.
This conjugate direction will be orthogonal to all the other bands, because it

was constructed out of the steepest-descent vectors which had been orthogonalised
against all other bands. However, the conjugate directions from the previous iterations
will not be orthogonal to the present band, and hence this preconditioned conjugate
direction will have to be explicitely orthonormaalised against the i-th band

|ϕ′′mi 〉 = |ϕm
i 〉 − 〈ψm

i |ϕm
i 〉|ψm

i 〉

|ϕ′mi 〉 =
|ϕ′′mi 〉

〈ϕ′′mi |ϕ′′mi 〉1/2

A point of notation, in the last two equations we changed from the transformed
eigen-state |Ψm

i 〉 to the original |ψm
i 〉.

Line Minimisation: So far the solution is still at the tip of the starting guess
for the eigen-vector, and should move along the conjugate dirction derived above.
However, the constraints restrict the solution to be on the surface of a sphere of unit
radius. Moving from the surface along any direction orthogonal to the radius vector
at that point will obviously violate this constraint. Hence, the next update of the
eigen-vector is taken as a combination of |ψm

i 〉 and |ϕ′mi 〉, so that the resulting vector
is still normalised 6

|ψm+1
i 〉 = cos θ|ψm

i 〉+ sin θ|ϕ′mi 〉 (θ real)

where θ is some parameter which minimises the expectation of the hamiltonian. This

PSfrag replacements

A
B

C

|ϕmi 〉

|ψmi 〉

|ψ
m+1
i

〉

sin θ|ϕmi 〉

cos θ|ψmi 〉

O

vector is a normalised vector that is orthogonal to all the lower bands.The Constrints for a 3×3
system However, the imposition of this constraint violates the assumptions under which

the conjugate direction was derived, namely that the next step would be taken from
the tip of the previous solution.
To illustrate this point consider a 3 × 3 system, projected on a 2D plane for

convinience. The current solution |ψm
i 〉 is at the point B, and the conjugate direction

at B is |ϕ′mi 〉 which is in the plane of the paper and orthogonal to |ψm
i 〉. The updated

6Note that we have already normalised the conjugate vector
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vector is |ψm+1
i 〉 is obtained by moving from A along |ϕ′mi 〉 which is a conjugate

direction at B and not A. For a 3D problem, the conjugate direction at A could have
been in any direction perpendicular to |ψm

i 〉, i.e. it need not lie in the plane of the
paper.
An exact solution would require determination of the conjugate directions at all

points along OB, the form of which is not necessarily the same as the one derived in
the last section. However, if we assume that γm−1

i has the same form, then |ϕm
i 〉 has

the same value.
To find the value of θ = θmin for which the expectation of the Hamiltonian is

minimised, we see that
E(θ) = 〈ψm

i (θ)|H|ψm
i (θ)〉

and the θmin which minimises this is

tan 2θ =
2〈ϕ′mi |H|ψm

i 〉
〈ψm

i |H|ψm
i 〉 − 〈ϕ′mi |H|ϕ′mi 〉

The Effect of Constrains: In absence of the constrains the formula for γm−1
i

derived above is equivalent to the more popular form[1]

γm−1
i =

〈η′mi | ζ ′mi 〉
〈η′m−1

i | ζ ′m−1
i 〉

(2)

But under the constrains, this is not true, since the vectors are only approximately
conjugate, and most of the orthogonalisation conditions do not hold exactly. However,
it should be noted that this formula requires additional storage of | ζ ′mi 〉, whereas in
the previous case, the preconditioned steepest-descent vector | η′mi 〉 overwrites the
steepest-descent vector.
The code however converges much faster for Eqn. 1 than for 2. The bulk of the

computation is in the evaluation of the term H|φ′mi 〉, and this is done once per itera-
tion, since H|ψm

i 〉 can be evaluated in terms of previously evaluated terms H|ψm−1
i 〉

and H|φ′m−1
i 〉
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Results: To test this algorithm a simple matrix form was assumed

Hi,j =

{

i2/3 if i = j√
i+ j − int√i+ j − 0.5 if i 6= j

This is a diagonally dominant matrix with the diagonal elements representing the
kinetic energy of the Hamiltonian whereas the off diagonal elements are like the po-
tential energy terms.
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Figure 1: A Matrix of size 400 was tested. The first figure shows the improvements of

convergence of the conjugate gradient method over the steepest-descent, and also how the

preconditioner accelerates convergence. The second figure shows the convergence of some of

the higher eige-nvalues .
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