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A detailed description of the simplified linear combination of atomic orbitals (LCAO) method
implemented within the SO(3) representation is presented.

I. INTRODUCTION

The tight-binding method works by expanding the energy eigenstates of the Hamiltonian in an atomic-like basis
set {ϕiα}, and replacing the many-body Hamiltonian operator with a parameterized Hamiltonian matrix. In general,
the basis set is not explicitly constructed. Nonetheless, it is atomic-like because it has the same symmetry properties
as the atomic orbitals. In practice only a small number of basis function are used, those corresponding to the atomic
orbitals in the energy range of interest. For instance, when modeling iron only the valence electrons, 3d and 4s, might
be considered, while the core electrons can be reasonably neglected since they don’t participate in bonding. The
energy eigenstates of the system are then obtained by solving the time-independent Schrödinger equation (TISE).

In order to turn an electronic structure method into an atomistic method, total energy and atomic forces are
required. The total band energy of a crystal is evaluated by integrating the density of states, n(ε),

Eband =

∫ εF

0

dε n(ε)ε (1)

where εF is the Fermi level. The method used to obtain Eband, and its derivatives is the difference between the variety
of tight-binding methods. All other parts of the energy are typically described by a pairwise potential,

Erepulsive =
∑

i6=j
Uij (2)

where the indices i, j typically run over the atoms in the crystal.
This paper consists of two main parts. In Section II, provides a detailed explanation of the Slater-Koster scheme

for tight-binding. The rotation matrix formulation of tight-binding is presented and then explicitly worked out for
the case of p-orbitals in Section III. When appropriate, detailed proofs of subtle calculations are provided in the
Appendixes. For a recent review article on tight-binding method, the reader is referred to article by Goringe et. al.1

II. SLATER-KOSTER SCHEME FOR TIGHT-BINDING

The starting point for any discussion of the tight-binding method is the Slater and Koster original paper.2 The first
three sections of the paper are essential reading for anyone with serious interest in the subject. The problem is to
find the electronic structure of an extended system. Bloch provided the formal mechanism for dealing with periodic

systems, such as crystals by means of the Bloch sum. Starting with an atomic orbital, ϕiα(~r − ~Ri), located on atom
~Ri, the Bloch sum is taken over all the periodic images of this orbital,

N−1/2
∑

~n

exp (i~k · ~T~n)ϕ(~r − ~Ri − ~T~n) (3)

where N is the number of periodic images, ~T~n = n1~a1 + n2~a2 + n3~a3 is the translation vector for the lattice, and
{ni} ∈ Z. A proof that Eq. 3 satisfies the Bloch theorem is presented in Appendix A. However, a less explicit notation
is used for convenience in the rest of this work,

N−1/2
∑

~Ri

ei
~k·~Riϕiα(~r − ~Ri). (4)

Where it is understood that the sum
∑

~Ri
is extended over the atoms in equivalent positions ~Ri in all N unit cells of

the crystal. In general, it will be necessary to setup such Bloch sums for each atomic orbital (labeled with the Greek
character) on each atomic site (labeled with the Roman character) in the periodic-unit cell.
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The atomic orbitals, ϕiα(~r − ~Ri), are not ideal for the purpose because orbitals on different atomic sites are not
orthogonal to one another. Löwdin provided a scheme for creating an orthogonal set from a non-orthogonal one while
preserving the symmetry properties of the original set.3 Löwdin function are defined by

ψiα =
∑

jβ

S
−1/2
iαjβ ϕjβ (5)

where S is the overlap matrix,

Siαjβ(~k) =
∑

~Rj

ei
~k·(~Rj−~Ri)

∫

d3r ϕ∗iα(~r − ~Ri)ϕjβ(~r − ~Rj). (6)

The Löwdin construction (Eq. 5) involves evaluating the the reciprocal square root of the overlap matrix. Formally,
this is computed by introducing the parameter δS = S − 11, and expanding with the binomial theorem

S−1/2 = (11 + δS)−1/2

= 11− 1

2
δS +

3

8
(δS)2 − 5

16
(δS)3 + . . . , (7)

where 11 is the unit matrix.7

The Löwdin functions have a greater spatial extent than atomic orbitals, hence the Hamiltonian matrix Hwill have
non-zero matrix elements between atoms with second- or third-nearest neighbors. In the Slater-Koster scheme, Bloch

sums are formed from these Löwdin functions, ψiα(~r − ~Ri) which are orthonormal.

∫

d3r ψ∗iα(~r − ~Ri)ψjβ(~r − ~Rj) = δij . (8)

The Hamiltonian matrix elements are evaluated as a function of ~k with respect to these set of basis function,

Hiαjβ(~k) =
1

N

∑

~Ri, ~Rj

ei
~k·(~Rj−~Ri)

∫

d3r ψ∗iα(~r − ~Ri)Hψjβ(~r − ~Rj). (9)

This sum simplifies because one of the two sums can be canceled with the factor N−1, giving a sum over the periodic
images of one of the two atomic sites,

Hiαjβ(~k) =
∑

~Rj

ei
~k·(~Rj−~Ri)

∫

d3r ψ∗iα(~r − ~Ri)Hψjβ(~r − ~Rj). (10)

Given the Hamiltonian matrix as a function of the wave vector ~k, the band energies εn(~k) are obtained by solving
the single-particle TISE,

∑

jβ

Hiαjβ(~k)cnjβ(~k) = εn(~k)cniα(~k), (11)

where the cniα are the expansion coefficients for the Löwdin functions where n is the band index.
The actual calculation of the integrals present in the Hamiltonian matrix is non-trivial. First, we must construct

the orthogonalized Löwdin functions from the atomic orbitals. Since the one-electron Hamiltonian,

H = − ~2

2me
∇2
~r +

∑

i

V (|~r − ~Ri|), (12)

involves a sum of spherically symmetric potentials located at all the atoms in the crystal. The integrals involving the
periodic potentials in Eq. 10 are classified into four categories:

1. On-site integral - The potential and both orbitals are centered on the same atomic site.

2. Two-center integral - The potential and one orbital is centered on the same atomic site, while the other orbital
is at a different location.
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3. Three-center integral - The potential and orbitals are all centered on different atomic sites.

4. The fourth category occurs when the orbitals are on the same atomic sites, but the potential is on different
atom. This category shares features with both the two-center and three-center integral but is actually a local-
environment correction to the on-site terms. This category was ignored by Slater-Koster, but the formalism was
later developed by Mercer and Chou.4

In the two-center approximation, the only part of the potential energy that we retain is the sum of spherical
potentials located on the two atoms on which the atomic orbitals are located. The integral now depends only upon
the form of the Löwdin functions, which have the same symmetry as the corresponding atomic orbitals, and the vector
between the atoms. The Hamiltonian matrix elements can therefore be written as

Hiαjβ(~k) =
∑

~Rj

ei
~k·(~Rj−~Ri)

∫

d3r ψ∗iα(~r − ~Ri)H2cψjβ(~r − ~Rj) (13)

Hiαjβ(~k) =
∑

~Rj

ei
~k·(~Rj−~Ri)Fαβ(Rij)Kαβ(k, l,m) (14)

where H2c is the Hamiltonian within the two-center approximation. The matrix elements in Eq. 14 consists of Fαβ
which only depends on the interatomic distance Rij = |~Ri − ~Rj | and Kαβ which contains the angular dependence on
the direction cosines (k, l,m) as taken from Table 1 of Slater and Koster.2 (Note that a summation is not implied
over repeated indices on the right-hand side of Eq. 14.)

It should be noted that many writers on this problem have assumed that three-center integrals are negligible
compared to two-center integrals. This is not necessarily the case, however they are certainly smaller than the two-
center integrals. If we regard the tight-binding method as an interpolation scheme rather than an ab initio electronic
structure method, then the two-center approximation is sufficient, provided we have enough arbitrary constants to fit
the information at hand.

The approximations made in the standard forms of orthogonal tight-binding can be summarized as follows:

1. The total energy is divided into the the sum of single-electron band energies plus the sum of pair potentials.

2. The Hamiltonian matrix elements are taken to depend only upon the vector between two atoms (two-center
approximation).

3. A set of orthogonal basis functions is assumed to exist.

4. Self-consistency is neglected.

III. CALCULATION OF THE p-BAND HAMILTONIAN MATRIX ELEMENTS

The physical interpretation of the Fαβ and Kαβ in Eq. 14 is straightforward if we work in the Lz basis. Consider
any two p-orbitals α = (1,m) and β = (1,m′) on atomic sites (i, j) lying along a common z-axis. This so-called
standard configuration is depicted in Figure 1. Then by cylindrical symmetry, the Slater-Koster matrix is diagonal.8

K =





ppπ 0 0
0 ppσ 0
0 0 ppπ



 (15)

Appendix B provides a rigorous proof that the Slater-Koster matrix K is diagonal in the quantum numbers (m,m′).
There is freedom in our choice for the functional form of Fαβ(Rij) in Eq. 14, for simplicity we choose

Fαβ = e−qRij , (16)

where q is an ab initio fitting parameter.
When the p-orbitals (α, β) lie on atoms (i, j) sharing a common z-axis, we have

Hiαjβ(~k) =
∑

~Rj

ei
~k·(~Rj−~Ri)

∫

d3r ψ∗iα(~r −Riẑ)H2cψjβ(~r −Rj ẑ) (17)

Hiαjβ(~k) =
∑

~Rj

ei
~k·(~Rj−~Ri)e−qRijKαβ . (18)
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FIG. 1: Twp pz orbitals on atoms (i, j) which lie along the z-axis.

Consider the more general case of two p-orbitals which do not lie along a common z-axis. The main idea is to
transform the atomic configuration depicted in Figure 2 into the previous case which we already know how to solve.
Both of the p-orbitals must be rotated so that z′ is the new quantization axis.

This turns out to be straightforward by using rotation operators. The generalization of Eq. 18 is

Hiαjβ(~k) =
∑

~Rj

ei
~k·(~Rj−~Ri)

∫

d3r ψ∗iα(~r − ~Ri)H2cψjβ(~r − ~Rj) (19)

Hiαjβ(~k) =
∑

~Rj

ei
~k·(~Rj−~Ri)e−qRij 〈α| eiφijL̂zeiθijL̂yKe−iθijL̂ye−iφijL̂z |β〉 (20)

where the angles are defined implicitly through the equation

~Ri − ~Rj = Rij [sin θij(x̂ cosφij + ŷ sinφij) + ẑ cos θij ]. (21)

In the Lz represenation, the only non-diagonal matrix remaining in Eq. 20 is Ly, which can be explicitly calculated
from the lower-raising operators5

〈l,m| L̂y |l′,m′〉 =
1

2i
δll′
[

√

l(l + 1)−m′(m′ + 1)δm,m′+1 −
√

l(l + 1)−m′(m′ − 1)δm,m′−1

]

(22)

Note that By working in the Lz basis our task has simplified tremendously. However, we want to avoid explicitly
calculating the exponential of the non-diagonal matrix e±iθijLy , since this involves a power series expansion of the
matrix Ly. The standard trick for dealing with this issue is to use a similarity transformation. The Lz representation

of the L̂y operator can be written as

L̂y
.
=MyLzM

†
y . (23)

where My is a matrix whose columns are the eigenstates of the Ly operator written in the Lz basis.

Using Eq. 20, Eq. 23, and the identity eV AV
†

= V eAV † where V is unitary, the resulting Hamiltonian matrix
element in the Slater-Koster scheme is

Hiαjβ(~k) =
∑

~Rj

ei
~k·(~Rj−~Ri)e−qRij ~α†eiφijLzMye

iθijLzM†
yKMye

−iθijLzM†
ye
−iφijLz ~β, (24)
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FIG. 2: Two pz orbitals on atoms (i, j) which do not lie along the z-axis.

where α and β are the Lz representation of the orbitals. Typically, these will either be the spherical harmonics or

the real orbitals (e.g. px, py, pz). The former case is trivial to evaluate because ~α and ~β are unit vectors. Using real
orbitals, is slightly more complicated and is discussed in Appendix C.

For convenience we introduce the diagonal matrices

Φij =





eiφij 0 0
0 1 0
0 0 e−iφij



 (25)

and

Θij =





eiθij 0 0
0 1 0
0 0 e−iθij



 . (26)

As well as the transformation matrix

Uij =MyΘijM
†
yΦij (27)

In terms of these the diagonal matrices, Eq. 24 is given by

Hiαjβ(~k) =
∑

~Rj

ei
~k·(~Rj−~Ri)e−qRij ~α†U †ijKUij

~β (28)

Table 1 from the Slater and Koster paper can be reproduced by evaluating Eq. 28 for the case of real orbitals. For
arbitrary angular momenta, implementing Eq. 24 is straightforward since most of the matrices are diagonal. The most
difficult part is calculating the similarity transformation My. This is typically accomplished by explictly constructing
Ly as given by Eq.22 and then calling the LAPACK routine ZHBEV which diagonalizes band-Hermitian matrices.
Note that K is only diagonal in the quantum number m and not `. There are non-zero matrix elements for ` 6= `′

and m = m′ which obey the rule ``′m = (−1)`+`′(`′`m). For example, the K matrix for spd hybrid orbitals is the
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9× 9 matrix

K =



























ssσ 0 −spσ 0 0 0 sdσ 0 0
0 ppπ 0 0 0 −pdπ 0 −pdπ 0
spσ 0 ppσ 0 0 0 −pdσ 0 0
0 0 0 ppπ 0 −pdπ 0 −pdπ 0
0 0 0 0 ddδ 0 0 0 0
0 pdπ 0 pdπ 0 ddπ 0 0 0
sdσ 0 pdσ 0 0 0 ddσ 0 0
0 pdπ 0 pdπ 0 0 0 ddπ 0
0 0 0 0 0 0 0 0 ddδ



























. (29)

APPENDIX A: ATOMIC ORBITAL BLOCH SUM

Bloch’s theorem states that the solutions to the TISE for a periodic potential have the special form

ψ~k(~r) = ei
~k·~ru~k(~r) (A1)

where u~k(~r) has the periodicity of the crystal lattice.

u~k(~r) = u~k(~r +
~T ) (A2)

Note that Eq. A1-A2 imply that

ψ~k(~r +
~T ) = ei

~k·~Tψ~k(~r) (A3)

for every ~T in the Bravais lattice.
Let explicitly show that

χ~k(~r) =
1√
N

∑

~Ri

ei
~k·~Riϕ(~r − ~Ri) (A4)

satisfies the Bloch condition Eq. A3.

Consider a translation ~T connecting two lattice points:

χ~k(~r +
~T ) =

1√
N
ei
~k·~Ri

∑

~Ri

ϕ(~r + ~T − ~Ri) (A5)

= ei
~k·~T 1√

N

∑

~Ri

ei
~k·(~Ri−~T )ϕ(~r − (~Ri − ~T )) (A6)

= ei
~k·~Tχ~k(~r) (A7)

APPENDIX B: K IS A BLOCK DIAGONAL MATRIX

Although it is a straight forward matter to prove that K is block diagonal in the quantum numbers (m,m′) when
the basis functions are atomic orbitals, this is not case with the Löwdin functions. In fact, Slater and Koster point
this only an approximation on p. 1503 of their paper2

“Actually, the ψ’s are not atomic orbitals, but rather the Löwdin orthogonalized functions, but we have
seen that they still have the same symmetry properties with respect to the crystal as the atomic orbitals,
and it is not a bad approximation to assume that they can be expanded in the same way. In the integral
(2), we shall get nonvanishing components only if we are dealing with σ components of both ψn and ψm,
or π+ components of both, or π− components of both, etc.”
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Consider the situation depicted in Fig. 1. The Hamiltonian matrix elements within the two-center approximation
involve kinetic as well as potential energy integrals.

The potential energy part of the two-center integral in Eq. 13 is given by

∫

d3r ϕ∗iα(~r − ~Ri)V (|~r − ~Ri|)ϕjβ(~r − ~Rj). (B1)

By introducing ~u ≡ ~Rj − ~Ri and using translational invariance, we may write

∫

d3r ϕ∗iα(~r)V (r)ϕjβ(~r − uẑ). (B2)

The Slater-Koster matrix K involves the matrix elements between orbitals α = (n, l,m) and β = (n′, l′,m′). The
two-center integrals of interest are

∫

d3r Rnl(r)Y
∗
lm(θ, φ)V (r)Rn′l′(r

′)Yl′m′(θ′, φ′) (B3)

where Rnl(r) is the radial wave functions, Ylm(θ, φ) are the spherical harmonics, and n is the principal quantum
number.

The primed coordinates (r′, θ′, φ′) are spherical coordinates centered on atom j (refer to Fig. 3). The relationship
between the prime and unprimed coordinates are:

r′ =
√

r2 + u2 − 2ur cos θ (B4)

φ′ = φ (B5)

θ′ = π − arcsin

(

r sin θ√
r2 + u2 − 2ur cos θ

)

. (B6)

θ’

θ

u

r

r’

Ri

Rj

P

z

FIG. 3: Two center integration coordinates.

From Eq. B3 and Eq. B5, it follows that the off-diagonal matrix elements of K vanish due to integrals of the form9

∫

dφ e−i(m−m
′)φ = δmm′ (B7)

APPENDIX C: SPHERICAL HARMONIC EXPANSION OF THE REAL ORBITALS

In many electronic structure applications, spherical harmonics prove to be an inconvenient basis. For example, in
most crystalline solids spherical symmetry is broken, and azimuthal quantum number m is simply a bad quantum
number. Real orbitals are often the basis of choice. Following Sharma’s discussion, if the orbitals ψα and ψβ are real,
then their angular parts can be of three types,
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1. Yl0

2. 1√
2
(Yl−m + (−1)mYlm)

3. i√
2
(Yl−m − (−1)mYlm)

where m is a positive integer.6
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∫

d3r ϕ∗
iα(~r − ~Ri)

(

− ~
2

2me

~∇2
~r

)

ϕjβ(~r − ~Rj) vanish for the same reason.


