

Development of quantitative coarse-grained simulation models for polymers

Shekhar Garde & Sanat Kumar Rensselaer Polytechnic Institute grant number #0313101

Graduate students: Harshit Patel & Sandeep Jain Collaborator: Hank Ashbaugh, LANL/Tulane

Education/Outreach: New Visions, MoleculariumTM

Motivation

- Polymer blend phase behavior
 - Miscibility/immisciblity of polyolefins

Applications

• Self-assembly of block copolymers to form novel micro-structured materials

Hierarchy of Length and Time Scales

Examples: Lattice models or bead-spring chains, dissipative particle dynamics methods

Basic idea: Integrate over (unimportant) degrees of freedom

How do we coarse-grain atomically detailed systems without a significant loss of chemical information?

Do coarse-grained systems provide correct description of structure, thermodynamics, and dynamics of a given atomic system?

Coarse-graining of Polymer Simulations

Goal: To develop coarse-grained descriptions to access longer length and timescales

Coarse-graining method

- Perform molecularly detailed simulations of polymers
- Define coarse-grained beads by grouping backbone monomers
- Calculate structural correlations between coarse-grained beads
- Determine effective bead-bead interactions that reproduce coarse-grained correlations using Inverse Monte Carlo -- uniqueness?

Detailed molecular dynamics simulations

- Classical molecular dynamics
- *n*-alkanes C16 to C96 (M. Mondello *et al*. JCP 1998)
- 50 to 100 chains
- T = 403K P = 1 atm
- time = 5 to 10 ns

Coarse-graining intermolecular correlations

structural details are lost with increasing the level (n) of coarse-graining process

Coarse Graining Intramolecular Correlations

Inverse Monte Carlo simulation

 $E_{\text{total}} = E_{\text{inter}} + E_{\text{intra}}$

 $= \sum_{\text{pairs}} \varphi_{\text{inter}}(r) + \sum_{12\text{pairs}} \varphi_{12\text{intra}}(r)$

+ $\Sigma_{13\text{pairs}} \varphi_{13\text{intra}}(r)$ + $\Sigma_{14\text{pairs}} \varphi_{14\text{intra}}(r)$ + ...

Inter-bead Interactions

SIntra-bead Interactions

Oligomer conformation distribution

radius of gyration distribution for C96

CG method reproduces conformational statistics of molecular oligomers

Radius of Gyration and Effect of Temperature

excellent agreement with experiment

Polymer Conformation Distribution

polymer conformational space efficiently explored

Buckyball Polymer Nanocomposites

Conclusions

- CG method maps molecular scale correlations to coarse-grained potentials
- Coarse grained potential simpler than molecular potential and can be extended to polymer simulations while preserving molecular identity
- Not limited to polymeric species (*e.g.*, buckyballs/ nanocomposites)
- Path Forward
 - Polyolefin blends
 - Block copolymer assembly
 - Dynamics?

HYDRA Female hydrogen

Hydra: H atom

Mr. Carbone

Water molecule

Thank you!