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Defects can strongly influence the electronic properties of semiconducting materials, particularly in 2D or quasi-2D configurations, because of the reduced screening environment. Here, we study the structural and optoelectronic properties of defects within monolayer germanium monochalcogenides. Using reactive molecular dynamics to simulate various mechanisms for defect formation, we identify characteristic defects that occur within the monolayer. Additionally, we apply first-principles many-body perturbation theory within the GW/BSE approximation to investigate the influence of selected defects on the optoelectronic properties of the materials. We determine that the optoelectronic properties are significantly influenced by the presence of these defects.
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Two-dimensional (2D) or quasi-2D materials show great promise for optoelectronic and photonic applications, particularly because of the ability to tune bandgaps and other properties via strain, doping and layering of different materials.1–3
Defects in semiconducting materials can introduce localized states in the electronic bandstructure, resulting in bound excitons.
The reduced screening environment and tighter localization of electronic wavefunctions in low-D materials tend to magnify the effects of defects.4
Defect-bound excitons typically have stronger electron-hole binding and electron-phonon interactions as well as longer lifetimes.
The presence of defects can therefore be harmful to the optoelectronic function of materials, but may also be harnessed for applications such as single-photon emitters and catalysis.5


Defect Geometry with ab initio Molecular Dynamics
Calculates forces on nuclei at each timestep as a function of ground state electronic Hamiltonian
No empirical parameters
Allows simulation of defect formation through heating, ion bombardment, etc.
Allows comparison of stability of different 2D structures
Excited States with Many-body perturbation theory (MBPT)
Electrons and excitons treated as “quasi-particles”: particle plus the disturbance it causes
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The thing about different allotropes6
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