The SCAN Density Functional: Nonempirical, Predictive, and Efficient*

John P. Perdew,

Departments of Physics and Chemistry, Temple U., Philadelphia, PA 19122

The SCAN (strongly constrained and appropriately normed) meta-generalized gradient approximation was constructed [1] to satisfy all 17 known exact constraints that a semi-local functional can satisfy (compared to 11 for the PBE GGA). SCAN is further fitted to appropriate norms, non-bonded systems for which a semi-local functional can be accurate for exchange and correlation separately. SCAN recognizes and provides different GGA-like descriptions for covalent single bonds, metallic bonds, and van der Waals (vdW) bonds. Here I will review the functional itself, along with its long-range vdW extension SCAN+rVV10 [2]. I will also review applications to properties of diversely-bonded systems [3], including ferroelectricity [4], density and structure of liquid water [5], crystal structure stability [6], surface properties of transition metals [7], and critical pressures for structural phase transitions of semiconductors [8]. The accuracy of SCAN is often comparable to or better than that of a hybrid functional, at lower computational cost and without any fitting to bonded systems.

*Supported by NSF DMR-1607868 and DOE SC0012575.