Molecular-Dynamics Simulations of Copper Diffusion in Copper Chalcogenides

Wang Jing

Georgia Institute of Technology

It was recently discovered that copper chalcogenides Cu$_2$S and Cu$_2$Se are viable candidates for thermoelectric materials with high figure of merit (ZT) values at temperatures around 1,000 K [1,2]. And the possible reason for the high ZT is the low thermal conductivity arising from liquid-like Cu atoms in those phases. In this work, we perform first-principles molecular dynamics simulations to study the motion of Cu atoms in the high-temperature phases of Cu$_2$S and Cu$_2$Se and confirm the liquid nature of Cu atoms. To get a better understanding of the diffusion patterns of the systems, we have examined different phases of Cu$_2$S (hexagonal and cubic phases with increasing temperature). Starting from the hexagonal phase the Cu atoms show a disordered/liquid-like feature with a jump diffusion pattern. We find that the diffusion is faster in the x-y directions than in the z direction. A more isotropic diffusion pattern is found for the high-temperature cubic phase with a much larger diffusion coefficient.