Truly Scalable $O(N)$ Approach for First-Principles Molecular Dynamics of Non-Metallic Systems

Jean-Luc Fattebert and Daniel Osei-Kuffuor
Center for Applied Scientific Computing
We want to take advantage of growing computational power to simulate larger and more realistic problems in material sciences.

Sequoia, IBM BGQ, 1,572,864 cores

- DFT with Planewaves pseudopotential accuracy (LDA, PBE)
- Fast time to solution
 - 1 step in minutes (not hours!!!) to be useful for MD

Large problems > 5,000 atoms

For insulators, semiconductors

O(N) scalable algorithm
Developing an $O(N)$ algorithm for FPMD implies truncations / approximations

- Unlike classical physics models, in Quantum models the number of physical variables (electrons) grows with system size
 - $\rightarrow O(N^2)$ degrees of freedom and $O(N^3)$ operations in DFT

- Reducing computational complexity to $O(N)$ typically implies
 - Introduction of controllable approximations / truncate fast decaying terms
 - More complicated data structures – sparse vs. full matrices
For systems with band-gap, one can find a representation of the electronic structure with localized functions

- Example: C_2H_4

- (orthogonal) Maximally Localized Wannier functions
 - Minimize the sum of the spread of all the functions
 - $\sum_{i=1}^{N} \left| \phi_i \right| \left(\hat{X} - \left< \phi_i \middle| \hat{X} \middle| \phi_i \right> \right)^2 \left| \phi_i \right>$
 - [Marzari and Vanderbilt, PRB 1997]

Strictly localized, non-orthogonal, Not centered on atoms (adaptive)

Auxilliary “basis set”
Density Functional Theory: general formulation for non-orthogonal orbitals

- Energy minimization for general non-orthogonal orbitals [Galli and Parrinello, PRL 1992]

\[
E_{KS} \left[\{ \phi \}_{i=1}^{N} \right] = \sum_{i,j=1}^{N} (S^{-1})_{ij} \int_{\Omega} \phi_i(r) \Delta \phi_j(r) + F[\rho] + \sum_{i,j=1}^{N} (S^{-1})_{ij} \int_{\Omega} \phi_i(r)(V_{\text{ext}} \phi_j)(r)
\]

\[
\rho(r) = \sum_{i,j=1}^{N} (S^{-1})_{ij} \phi_i(r) \phi_j(r)
\]

To take into account non-orthogonality

- Assume finite gap \(\varepsilon_N < \varepsilon_{N+1} \)
- Assuming functions \(\phi_i \) are linearly independent...
- No need for any eigenvalue computation!
DFT O(N) algorithm for localized functions

- Real-space (finite difference) discretization
- Norm-conserving pseudopotentials
- Parallel domain decomposition
- Confine functions to finite spherical regions
 - Each Φ_i lives on Finite Difference mesh, in a localization region of center R_i and radius R_c
 - $O(1)$ d.o.f. for each orbital
- Iterative solver: direct minimization of energy functional
 - follow preconditioned steepest descent directions + block Anderson extrapolation scheme [JLF, J. Comp Phys 2010]
There remains an $O(N^3)$ operation…

\[
E_{KS}[\{\phi\}_{i=1}^{N}] = \sum_{i,j=1}^{N} (S^{-1})_{ij} \int_{\Omega} \phi(r) \Delta \phi_j(r) + F[\rho] + \sum_{i,j=1}^{N} (S^{-1})_{ij} \int_{\Omega} \phi_i(r) (V_{ext} \phi_j)(r)
\]

\[
\rho(r) = \sum_{i,j=1}^{N} (S^{-1})_{ij} \phi_i(r) \phi_j(r)
\]

- Not even expensive, but requiring a lot of communications
 - $O(N^3)$ solver becomes a bottleneck beyond 10,000 atoms and/or 10,000 MPI tasks
- Smaller size than in Tight-Binding models or LCAO methods
- “Global” coupling
- Need to calculate selected elements of the inverse of Gram matrix S
- We essentially need the elements S^{-1}_{ij} s.t. $S_{ij} \neq 0$
Gram (overlap) Matrix Properties

\[S_{ij} = \int_\Omega \phi_i(r) \phi_j(r) \, dr \]

- \(S_{ij} = 0 \Rightarrow |\tilde{c}_i - \tilde{c}_j| > 2R_c \)
- \(\tilde{c}_i = \text{position of } \phi_i \)
- \(R_c = \text{local function radius} \)

- S is sparse, Symmetric Positive Definite
- Condition number is independent of problem size!!
- Inverse
 - In principle full matrix…
 - …But off-diagonal elements decay exponentially fast
 [Demko et al., Math. Comp. 1984] [Benzi & Razouk, ETNA 2007]
 - Assumption: spectrum of S bounded away from 0, independently of N
We verify fast exponential decay of off-diagonal elements of the inverse of Gram matrix

- Polymers, 1888 atoms
- How to make efficient use of it on large parallel computers?
O(N) short-range calculation of selected elements of S^{-1}

- Based on the approximate inverse strategy

$$\text{Solve: } \arg\min_{M \in \mathbb{R}^{N \times N}} \|SM - I\|_F \Rightarrow M \approx S^{-1}, I = \text{identity matrix}$$

- Sparsity pattern of M is predetermined by geometric distance

$$\forall \phi_j \mid \bar{c}_j \in \Omega_L, \text{define } \mathcal{J} = \left\{ k \mid |\bar{c}_j - \bar{c}_k| < R_s \right\}$$

and set $M_{jk} \neq 0 \forall k \in \mathcal{J}$, for some distance R_s

- R_s determines accuracy of selected elements of the inverse
Computations of selected elements boils down to inverting local principal submatrix

- Include rows and columns of S corresponding to closest local functions (distance between centers)
- Solve for column k using $\text{ILU0–preconditioned GMRES}$
- Note: S not close to Identity matrix!!! (unlike in Tight-Binding or LCAO approach where no preconditioner is needed [Stechel et al. PRB 1994])
Error on approximate inverse decays fast with principal submatrix size

Example: polymer
Data layout

- Localized orbital are distributed across processors
- Each MPI task owns pieces of several functions
- Each MPI task computes partial contribution to the global matrices (overlap,...)
Exploiting sparsity poses challenges for fast parallel implementation compared to $O(N^3)$ algorithms

- Energy can be written as:
 \[E_{ks} = Tr(S^{-1}H_\phi) + F(\rho), \text{ where } H_\phi = \Phi^T H \Phi \]

- S^{-1} is approximated, sparse and has complete but distributed entries

- H_ϕ is sparse and distributed (incomplete entries)

- Each PE only needs entries corresponding to locally centered functions
 - Need to consolidate partial contributions of H_ϕ

- Efficient data communication and assembling algorithm is needed
Parallel data communication / matrix assembly is key to efficiency

- Each parallel task computes partial contributions to some matrix elements.
- Need to assemble local principal submatrix matrix.
 - Sum up partial dot products computed on various processors.
- We use a short range communication pattern where data is passed down to nearest neighbor only, one direction at a time, for as many steps as needed.
- Overlap communication and computation.
 - Accumulate received data in sparse data structure while sending data for the next step.
- Need to scatter results to adjacent processors that need column j of S^{-1}.
Three parameters to control error and achieve needed accuracy

- Finite difference Mesh spacing
 - error $O(h^4)$

- 2 parameters to control $O(N)$ truncation

 Localization of functions ϕ

 Cutoff for S^{-1} ($R_c=9$ Bohr)
Weak scaling: Test application

- Liquid water
 - 1536 atoms (512 molecules)
 - 2048 orbitals

- Replicate
 - 2x2x2
 - 3x3x3
 - 4x4x4
 - ...
Numerical results show excellent weak scaling and fast time to solution (No limit to scaling – in principle)
At 100K MPI tasks and beyond, everything needs to be distributed!

Liquid water on IBM/BGQ
Nearsightedness principle for parallel computation

- W. Kohn’s nearsightedness principle [PRL 1996]
- Nearsightedness in computational algorithm leads to $O(N)$ and parallel scaling beyond 100,000 MPI tasks
 - Practical accuracy achieved with short range communications / no global communications for insulators
Conclusion

- Research supported by LLNL LDRD program
- Recent Publications
 - D. Osei-Kuffuor and JLF, PRL 2014
- Future
 - Speed-up time-to-solution (threading)
 - Applications
 - Distribution of ions in dilute solution: K + Cl in water
 - Biology
 - Extension to metals…