Correlated electron properties, such as Mott transitions, are long-standing areas of interest in condensed matter physics. Canonical models in this field are (extended) Hubbard models containing localized electronic correlation effects. Slave-boson approaches have long been used for approximate solutions of such models. However, recently, there has been a renaissance of low-cost slave-boson approaches for dealing with correlated transition metal oxide systems.

Two specific models have been used in recent years: the slave-rotor method1,2,3,4 and the slave-spin approach5,6. We introduce a new, general formalism that, in appropriate limits, reproduces these two methods but also permits the creation of a larger variety of other slave-particle approaches and models. The approach corrects a number of errors of the slave-rotor approach due to its inclusion on "unphysical states" while also permitting to employ less complex and detailed descriptions of the slave modes than the slave-spin approach requires. We describe results for Mott transitions in single- and multi-orbital Hubbard models. We also describe how this method can be used to set up and solve many-body models extracted from Wannier analysis of realistic materials such as oxides of nickel.

\textbf{References:}
\begin{enumerate}
\end{enumerate}