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Project background

High-throughput calculations in the Vanderbilt/Rabe Rutgers group
were Initially carried out using published norm-conserving psp tables

Testing against LAPW+LO all-electron benchmarks showed
Inconsistent agreement

An improved table was initially generated using the norm-conserving
OPIUM code

Better results were obtained using VANDERBILT ULTRASOFT code

The resulting extensively tested GBRV psp table?! is available at
http://www.physics.rutgers.edu/gbrv/

So why worry about norm conservation?

1. Garrity, Bennett, Rabe & Vanderbilt, Comput. Mater. Sci. 81, 446 (2014)



Advantages of norm-conservation and goals

Ultrasoft and PAW potentials require computations to treat
— Generalized eigenvalue problems
— Augmentation of the charge density
— Self-consistent contributions to each non-local potential

Norm-conserving computations can use much simpler algorithms

— Especially important for more complex calculations such as DFPT, GW,
BES, QMC

— Example: DFPT for elastic constants has yet to be implemented for
anything but norm-conserving psps

Accuracy goal — ncpsps should be competitive with ultrasoft and PAW

Convergence goal — systematic optimization should adequately
“soften” ncpsps

Robustness goal — “tuning” psps to fit certain sets of test data should
be unnecessary and disparaged

— There should be no “black art” in making good psps

— Any graduate student should be able to do so, and should!



Separable psps

e The traditional approach (Kleinman-Bylander, Blochl):

— Construct pseudo wave function ¢ smoothly matching all electron y at
core radius I, and its norm inside I for each /.*

— Invert the Schrddinger equation to find the semi-local pseudopotential
— Choose a local potential matching the all-electron potential outside ..
— Calculate projector from @, the semi-local psp, and local potential. (KB)

— This duplicates all-electron scattering and its first energy derivative at
the energy ¢ of the original

— Additional projectors can duplicate semi-local potential scattering at
additional ¢ (Blochl)

 The Vanderbilt approach
— Construct the projectors directly:
| 2)=(e-T =V )|e), T=[-d?/dr*+¢(¢+1)/r*]/2

— For one projector, ‘Z><Z‘

" {elx)
— This is the KB result, but without inverting the Schrodinger eq.

(* ¢ and m indices will generally be omitted and can be assumed where needed)



Multi-projector separable psps

Vanderbilt approach for multiple projectors
— Calculate ,; at several &; for each / .
— Construct @, satisfying continuity conditions with the ¥ at I,
— The separable potential can now have the form

Vi = Z|Zi>(B_l)ij <ZJ‘ , By =<(pi ‘ZJ>
]
Prove B; is symmetric and V,_ is Hermitian if ¢, also satisfy
generalized norm conservation:
<<”i ‘¢i>rc :<‘//i "'”J>rc

— Log derivatives and energy derivatives of log derivatives agree with AE
results at each &;.

Branch point: “One could stop here, and still have a useful scheme.”
— Violate generalized norm conservation to get ULTRASOFT psps

— Redefine projectors and restore effective Hermiticity with an overlap
matrix in a generalized eigenvalue formulation

— Compute an augmentation operator to add charge to the plane-wave
charge density




ONCVPSP - on the other Riemann sheet

Enforce generalized norm conservation (Optimized “Norm-
Conserving Vanderbilt Pseudopotentials™)

Find that two projectors give excellent log-derivative agreement over
a wide energy range for a wide variety of atoms and reference &
choices:

— Semi-core — valence, valence — scattering, scattering — scattering
There is a caveat about relativistic all-electron reference v,
The key matrix element in GNC is

2 1d> ¢(0+1)
Bij — _[0 ?, |:gj +§dr2 B 2r2 _Vloc:|¢j

The symmetry of B; and other good properties follow from integration
by parts of this expression and the corresponding ¥; expression

For scalar-relativistic and Dirac-equation solutions, this doesn’t work
In practice, B; asymmetries are ~10

Ad-hoc symmetrization results in acceptable errors ~10-° in
eigenvalues, log-derivatives, norms, etc. independent of atomic Z

2. Quoted name from Morrison, Kleinman & Bylander, Phys. Rev. B 47, 6728 (1993)



V. format and spin-orbit decomposition

For easiest use with applications, it is best to find eigenfunctions
giving a diagonal expression with orthonormal projectors:

VNL(r’ I"') - Z|Z£mi>e£i <7Eﬁmi |

/mi

For Dirac-wave-function based psps, the sum is over j=/{=%3
Most applications require SO psps in the (schematic) form

Va (1) =3 [V (rr) + L-SV2(r,r) |
=V v /(25 +1), VO =2[V -V | /(zz +1)

Direct expression of the SR and SO potentials in terms of Dirac }?j,i
requires 8 projectors per ¢ and subtractions of large, nearly equal
terms in the applications

Instead, we find eigenfunctions Zorand ;7 of VfRand Vf’o, and find that
one or two eigenvalues of each are usually negligibly small (< 10->Ha)



Convergence optimization

 The best method is that of Rappe, Rabe, Kaxiras, and Joannopoulos

— Adjust the psuedo wave function to minimize the kinetic energy error due
to the cutoff of its plane-wave expansion (proxy for total energy)

— Incorporated in the open-source OPIUM psp code
— This proved too difficult to adapt to my purposes

« Reformulation of the method introducing a general residual kinetic
energy operator:

(64 E" @] &) =], &a@é;(@a'da, &ila) =4z . (ané,(rridr

where &, are some set of basis functions, j, is a spherical Bessel
functions, and g, is the expansion cutoff

* Introduce an initial basis set of N spherical Bessel functions

EP=j,(qn),r<r ;8 =0,r>r,
 Orthogonalize and normalize

gio — i(sl/z)ij éer ; Sij :<§iB‘§jB>




Optimization (single ) made simple

M matching conditions ((jj o1 _ Z VI n=0.M -1
rn rn

give M linear equations for N /fio coefficients solved for matching ¢,
function and N-M orthonormal “null space” functions &"

Diagonalize the positive-definite matrix (&"|E(6.)|&]') finding its
eigenvalues eiR and using its eigenfunctions ;R to expand @

¢ — (DO + Zi XigiR
Residual energy and norm constraint are diagonal quadratic forms
(0] E"[0)= (2o E"|00)+ 2, 2{0|[E"[ 67 ) xi +e'x |
2% =wly), —(ole),

Huge eiR dynamic range (~10°) demands robust minimization approach

— Search norm-constrained {Xz,---, XN_Mm }hypersphere on a coarse grid for
global minimum and corresponding X, sign

C

— Finish off with Newton’s method
— Find diminishing returns for N-M>3-4 (2 is often fine)



Optimizing two pseudo wave functions

Choose all-electron ¥1 and ¥, usually with one more node for¥>

Optimize @; first, with only the quadratic <(01‘€01>rc norm constraint.

Optimize ¢, combining the linear <§01|(p2>r overlap constraint with
C

linear @, <> ¥, matching constraints.

Treat the quadratic <g02 ‘(02>r constraint as usual.

Calculating a convergence profile

Optimization is done with a preselected cutoff Q

After finding @ . E(q) = (9| E"(q)| @) is defined for any 0

A set of values can be calculated very efficiently by saving selected
data as E" matrix elements are accumulated.



Energy (Ha), ry

Optimizing positive energy reference states

Zr d scattering state (1.09 Ha)

scattering

all-electron V

1 2 3 4 5 6 7 8

radius (a,)

Fourier transform of this state
approaches a delta function and
a useful E'(q) for a corresponding
scattering pseudo wave function
can’'t be defined

Solution — create a potential that
has a bound state at the desired
energy
— Generally with one more node
than lower-energy states

Barrier to create the bound state
should be

— Additive to all-electron V
— Zero for r<r,

— Zero with several zero derivatives
atr,

— Designed so that the bound ¥
norm inside r. is roughly
comparable to valence states



Optimizing positive energy reference states
Zr 5d barrier-bound state

Zr d scattering state (1.09 Ha)
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Energy (Ha)

Energy (Ha)

Zr d optimized projector pseudo wave functions

different potentials
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PSPs and all-electron
pots are identical for
r<r. in both with and
without barrier

For barrier-free
potentials, bound and
scattering states obey
the generalized norm
conservation condition
independent of
scattering-state
normalization

All the resulting
properties are
preserved despite the
use of the barrier for
optimization

Can use two positive-
energy states with two
different barriers



Predicting energy convergence of solids
1
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Solid lines are smoothed plane-wave convergence results for diamond Si
and fcc Cu with one (KB) and two (OV) projectors

Open circles are E'(q) for the most slowly convergent first projector
Second projectors generally have negligible influence on convergence




Continuity

Continuity in RRKJ paper and OPIUM code was limited to wave
function second derivatives and hence psp/projector values

— Slope discontinuity is a concern, for example for elastic constant DFPT
calculations where 1st and 2" psp derivatives are taken

— Figure from original paper (below) was a little scary

IONIC PSEUDOPOTENTIAL (Ry)

r (au)

FIG. 2. Pseudopotentials for the copper 3d eigenstate using
the HSC method (dashed line) and the present approach (solid
line).



Continuity

e Additional continuity is nice but in fact has very little effect

— Present optimization minimizes slope discontinuity, even when it is not
enforced (M=3 is equivalent to original)

— This example was the worst found, and needs a lot of magnification to
see the differences
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General guidelines for ONCVPSP parameters

Neutral ground state used as reference for all atoms

— Formal charge state has very little effect on charge densities in solids (W.
Pickett, '14 March Meeting)

— Scattering states obviate the need for ionic configurations

Local potential is polynomial extrapolation, not a semi-local V

— Permits two projectors per ¢/, and avoids conflicts with applications
Nearest cores treated as valence for groups 1, 2, and transition
elements, as are filled d shells for some heavier elements

— Usually little convergence penalty because of optimization

— Polynomial model core used otherwise for non-linear correction
Psp parameters adjusted using built-in graphics

— Typically, work from some nearby example and adjustr,, q. V
and projector ¢ separation

— Highly “ghost-resistant,” but have robust detection by log-derivative scans
Several excited/ionized configurations are tested

— Copies OPIUM capability, but doesn't prove that useful

Post-testing “parameter tuning” should not be necessary, and in fact
should not be able to change the results significantly

— Very short bonds may require somewhat smaller core radii

N, M

loc !
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a(ag) B, (GPa)
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Scalar-relativistic performance tests

Lattice Constants Bulk Moduli
Cu Cu
BiSe BiSe
SrO SrO
SrTio3 SrTio3
CaSi2

Sio2

Ba
KBaN

-0.3 -0.2 -0.1 O!O 01 02 03 -3 -2 -1 0 1 2 3
ONCVPSP / LAPW-LO Discrepancies (%)
« Variety of coordinations and formal valences
— (Very) coarse sample of periodic table
— Most atoms tested in several systems
« ELK for lapw+lo, ABINIT for psps with 10 — 30 Ha plane-wave cutoffs
— Burch-Murnaghan 3-order EOS fits for lapw+lo
— Lattice optimization and DFPT elastic constants fof psps
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Spin-orbit comparison

HgTe Relativisic Band Structure

* ONCVPSP using
PWSCF with
25Ha cutoff

 ELK using default
atomic data and
convergence
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Magnetic systems

Respectable agreement but not as good as results for unpolarized
systems

3s, 3p, 3d, and 4s treated as valence for metals, with 3d dominating
convergence at 30 Ha
These tests are still a work in progress

— ELK does not find a minimum in the E(V) plot for NiO, so maybe | don’t
have things right with it yet for polarized systems

— ABINIT with these psps gives a very reasonable NiO lattice constant,
judging from experiment

System a (ag) B, (GPa) moment (mg)
AE oV AE oV AE oV
Fe 518 5.21 248 239 1.70 1.92
Co 6.46 6.48 264 271 1.49 1.48
Ni 6.45 6.48 279 253 0.57 0.58

MnO 8.01 8.16 167 181 4.01 4.07




Principles and plans for ONCVPSP

There are no defaults — all data determining results are input in a
simple template, with examples for guidance

— The same data runs non-, scalar-, or fully-relativistic calculations
The code is run by simple shell scripts, with a single output file

— Start of file echoes data and gives diagnostic information

— Remainder is parsed by script to generate “walk-through” graphics

— Auxiliary script extracts psp files for ABINIT or QUANTUM ESPRESSO
Sources are simple Fortran90

— Lots of documentation and comments, no fancy datatypes

— Should be easy to add features or psp formats
Periodic table of these psps?

— Complete set of input files, eventually yes with volunteered contributions

— Psp set? NO!* Unaccompanied by the code, these become effectively
undocumented and can’t be improved (violating open-source policy)

— Testing of complete set? Please, be my guest! (use GBRYV test set)
Remember, the only tests that ultimately matter are experiments

* Pseudopotentials That Work: From H to Pu, Bachelet, Hamann & Schluter,
Phys. Rev. B 26, 4199 (1982)



40 Zr input data

# ATOM AND REFERENCE CONFIGURATION
# atsym, z, nc, nv, iexc psfile
Zr 400 6 4 3 psp8

#

#n,l,f (nc+nv lines)
0 20
0 20
1 6.0
0 20
1 6.0
2 10.0
0 20
1 6.0
2 20
0 20

GORrBRDWOWWWNDNLPE

#
# PSEUDOPOTENTIAL AND OPTIMIZATION
# Imax
2
#
#1,rc, ep, ncon, nbas, gcut (Imax+1 lines, |,s in order)
0 220 000 5 8 6.00
1 220 000 5 8 6.00
2 200 000 5 8 6.50
#
# LOCAL POTENTIAL
#lloc, Ipopt, rc(5), dvlocO
4 5 20 00
#
# VANDERBILT-KLEINMAN-BYLANDER PROJECTORS
#1, nproj, debl (Imax+1 lines, I's in order)
0 2 150
1 2 150
2 2 125

#
# MODEL CORE CHARGE
#icmod, fcfact
0 0.0
#
# LOG DERIVATIVE ANALYSIS
# epshil, epsh2, depsh
-3.0 3.0 0.02
#
# OUTPUT GRID
# rimax, drl
5.0 0.01
#
# TEST CONFIGURATIONS
# ncnf
3

#
# nvcnf (repeated ncnf times)
# n, |, f (nvenflines, repeated follwing nvenf's nenf times)

2.0
6.0
2.0
1.0

abs bbb
ON PO

2.0
6.0
1.0
2.0

abs bbb
ONPEFO

2.0
6.0
1.0
1.0

abs bbb
ONPEFO



Slide show of automated walk-through graphics

40 Zr.out lon Pseudopotentials
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Hit enter to continue



40

40 Zr.out Charge Densities
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40 Zr.out Wave Functions
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40 Zr.out Wave Functions
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40 Zr.out Projector Wave Funcrions
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40 Zr.out ARCTAN(log derivatives)
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40 Zr.out Wave Functions
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40 Zr.out Projector Wave functions
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40 Zr.out ARCTAN(log derivatives)

C R —
. R —— P full
| P pseudo
6 - |
l
. |
\
M——
4 - §~\\
\
\
. \
\
N\
2 - \\&'
0 -
'2 1 ] 1 ] 1 ] 1 ] 1 ]
-3 -2 -1 0 1 2

Energy (Ha)




r(r)

40 Zr.out Wave Functions

0.6 -

0.4

0.2 4

0.0 -

-0.2 4

=
=~
-,
-

—— D full
D pseudo

-0.4

' J
2

J
3

Radius (a,)




40 Zr.out Projector Wave Funtions
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40 Zr.out ARCTAN(log derivatives)
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Obtaining and using ONCVPSP

You can download the open-source package from
http://www.mat-simresearch.com/
or see me later

The formalism, all the relevant references, and most of these results are in
D. R. Hamann, Phys. Rev. B 88, 085117 (2013)

The two key papers upon which ONCVPSP is based are
D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)
A. Rappe et al., Phys. Rev. B 41, 1227 (1990)

For good ultrasoft/paw potentials and good test set see
Garrity, Bennett, Rabe & Vanderbilt, Comput. Mater. Sci. 81, 446 (2014)



