
 

 

Eigenvalue Solvers 

Introduction to Sensitivity and 
Accuracy 
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Eigenvalue problems 

Before we compute eigenvalues and eigenvectors numerically, 
we must understand what we can and cannot compute 
(accurately) or should not compute. 
 
We may want Ax x  for single eigenpair, for example with 
 as small as possible. Say minimum energy level. 
 
In many cases we want i i iAx x  for 1i M   (M  large), 
where i  are smallest M  eigenvalues.  

 
 It may be important that we do not skip any eigenvalues. 
 We may want the invariant subspace accurately. 
 We may want every eigenvector accurately. 
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Usefulness of Computed Results 

In general we need to consider the accuracy of a computed 
answer, without knowing the exact answer. 
 
This involves the sensitivity of the result we want to compute. 
 
If some result is very sensitive to small changes in the 
problem, it may be impossible to compute exactly. In other 
cases results may be computable but at very high price, for 
example, an algorithm may convergence very slowly. 
 
Sometimes it is better to compute related but less sensitive 
result. 
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Sensitivity of an Eigenvalue 

Sensitivity of eigenvalues to perturbations in the matrix. 
 
Different eigenvalues or eigenvectors of a matrix are not 
equally sensitive to perturbations of the matrix.  
Let Ax x  and * *y A y , where 1x y  . 
Consider      A E x e x e       and drop second 
order terms. 
Ax Ae Ex x e x Ae Ex e x              

* * * * * *y Ae y Ex y e y Ex y e y x        
*

* *
* *

Ey Ex
y Ex y x

y x y x
        

Condition number of simple eigenvalue:  
1*y x 
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Sensitivity of an Eigenvalue 

For symmetric/Hermitian matrix, right and left eigenvectors 
are the same. So, eigenvalues are inherently well-conditioned.  
 
More generally, eigenvalues are well conditioned for normal 
matrices, but eigenvalues of nonnormal matrices need not be 
well conditioned.  
 
Nonnormal matrices may not have a full set of eigenvectors. 
The algebraic multiplicity, the multiplicity of  as a root of 

 det 0A I  , is not equal to the geometric multiplicity, 
 dim null A I . In that case we can consider conditioning 

of the invariant subspace associated with a Jordan block. 
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Sensitivity of an Eigenvalue 

If   is an eigenvalue of A E , then  A    exists: 

  1XEX X E      

where X  is the matrix of eigenvectors of A and 
  1X X X   is a condition number (consistent norm). 

 
A useful backward error result is given by the residual.  
 
Let r Ax x   and 1x  .  
Then there exists a perturbation E  with E r  such that 
  A E x x  .  

Proof: Take *E rx  . 
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Sensitivity of Eigenvectors 

Consider 1 2
1

01 0 1
,

0 10 1
A x x



                              
. 

Consider perturbation E  with 1 2E    , 2  arb. small. 
Enough to give A any eigenvectors not equal to 1x  and 2x . 
Let 1 2E E E   and 1 2

ˆ ˆ ˆX x x      (unitary) 

Let 1
1

0 0

0
E



       
 and *

2
2

0 0
ˆ ˆ

0
E X X



      
. 

1A E I   (all nonzero vectors are eigenvectors) 

* *

2 2

0 0 1 0
ˆ ˆ ˆ ˆ

0 0 1
A E I X X X X
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Eigenpair Perturbation 

General perturbation result is not simple 
 
Let  ,x  be simple eigenpair of A,  x X  be nonsingular,  

 

and    
* 0

0
y Y A x X

M

     
, where    

* 1

y Y x X


 . 

Let A A E  ,    
*

* 11 12

21 22

f
y Y E x X

f F

      
, and 

 
   

11sep ,M I M 
  .  (consistent norm) 
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Eigenpair Perturbation 

If   2*
21 12 11 224 sep ,f f M F    , then  

   , ,x x Xp    

 , where   

 

  
21

11 22

2

sep ,

f
p

M F 


 
, 

 
 

2 *
121

21
11 22

2

sep ,

p f
p I M f

M F


 
  

 
 , 

*
21y Ex p f   

If Y  orthonormal,  
 

2sin ,
sep ,

E
x x

M






 (2-norm). 
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Eigenpair Perturbation 

Hermitian/symmetric case: 
 

    sep , min :M M        
 

  2sin ,
min

E
x x

  









  

Distance to nearest other eigenvalue determines angle. 
 

*
21y Ex p f   

 

 
 

2sin ,
sep ,

E
x x

M 





  (2-norm). 
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Accuracy 

A small residual means a small backward error. The result is 
exact for a slightly perturbed problem. For numerical 
computations that is usually the best you can get. 
 
However, if the problem is ill-conditioned, the answer may 
not be accurate. 
Ax x r   implies  A E x x   with E r . 
 
So, if  too close to eigenvalues in  M  relative to r , then  
 ,x  may be completely wrong. Note that if some 
eigenvalues in  M  are ill-conditioned,  sep ,M  may be 
small even if   min : M      is not. 
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Computing Invariant Subspace 

So, we should avoid defining (sub)problems that are sensitive. 
 
For example, if we want to compute eigenpairs up to some 
eigenvalue (energy level). We can expect problems if the 
selection includes some eigenvalues from a tight cluster but 
not all. 
 
If the distance between two eigenvalues is very small relative 
to norm of the matrix, they are numerically identical: 
multiple eigenvalue. 
 
Even if we can distinguish them their eigenvectors may be 
very ill-conditioned, and so on. 
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Computing Invariant Subspace 

More complicated cases can also arise. Especially for 
nonnormal problems.  
 
If an eigenvalue is very sensitive, a small perturbation may 
move the eigenvalue near or in another cluster. 
 
This means it may not be a good idea to compute an 
invariant subspace that has small canonical angles with the 
invariant subspace corresponding to other eigenvalues. 
 
This type of ill-conditioning not as easy to spot as close 
eigenvalues. 



14 

General Perturbation Result 

Let  1 2X X  be unitary and    
* 1

1 2 1 2
2

L H
X X A X X

G L

     
. 

The  1range X  is invariant subspace iff *
2 1 0G X AX  . 

How near is  1range X  to invariant subspace for G  small? 
 
Let P  be matrix such that 

  
1
2*

1 1 2X̂ X X P I P P


    

  
1
2* *

2 2 1X̂ X X P I PP


    

 
where  1

ˆrange X  is invariant subspace. 
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General Perturbation Result 

Define   1 2T P PL L P  . P  under following condition. 
 

   1 2 1
sep , inf 0

P
L L T P


   , H  , G  . 

If 24   then unique P  exists such that 2P



 . 

 
1 2

ˆ ˆ,X X  generate invar. subspaces with representation 1̂L , 2̂L . 
 

    1/2 1/2* *
1 1L̂ I P P L HP I P P


     

 

    1/2 1/2* *
2 2L̂ I PP L PH I PP
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General Backward Error Result 

Let * *
1 1 1S X A L X  . Let *

1 1 1L X AX  and *
2 2 2L X AX . 

 
1 1 1R AX X L   and * *

1 1 1S X A L X   
 

If 
 1 2

1
sep , 4

R S
L L

    

 
then simple invariant subspace,  1

ˆrange X , such that  

 

 
 1 2

1 2

tan , 2
sep ,

R
X X

L L
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