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Background: QMC for Deep Earth Materials

 Important for geophysicists to understand properties of 
materials very deep in the ground

 Under high pressure and temperature DFT and other 
methods cannot predict certain properties accurately (and 
DFT has no error bars )

 QMC needs few assumptions, accurate, but currently too 
expensive – better algorithms for the linear algebra

 Collaboration VT, UIUC, CIW, UC Berkeley

 Ahuja, Ceperley, Clark, de Sturler, and Kim: Make QMC 
much faster for many particles 

 NSF Collaborations Math & Geosciences – 1025327

 Materials Computation Center/NSF (ITR) DMR



Quantum Monte Carlo Method
Quantum Monte Carlo for electronic structure calculations:  variational 
optimization of functions of the density of electrons. 
 
The multiparticle wavefunction: ( ) ( )1 1
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where 
i
r  has position and spin (we mostly ignore spin in this talk) 

 
Wavefunction gives the probability (density) of finding a particle (and 
spin) at a region in space (not always normalized). 
 
We want to optimize some function over parameter space (vector a),  
for example 
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  (this talk: real and normalized)

 
High dimensional (> few particles) need Monte Carlo method to evaluate



Quantum Monte Carlo Method
Sample local energy 

L
E  to evaluate expected energy 
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More generally, for observable ( );R Y : ( ) ( )2 ;R R dRY Yò   

 
Approximate integral by Monte Carlo sampling, compute average 

( );R Y  

 
However, Y  very small except at very localized regions  
 
So need importance sampling – sample preferentially from regions with 
high probability 
 
Need to sample with right probability 



Quantum Monte Carlo Method

Approximate ( ) ( ) ( )
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Sample ( )L

E R  from density ( )2 RY . 

 
Generate multiple configurations R  and for each do (repeatedly) 

1. generate random step of size d  

2.  accept move with probability 
( )
( )
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3. if accepted evaluate observable at new configuration 
  
Needs initialization period to obtain equilibrium (sequence of 
configurations has desired density). 
 
In practice we move a single particle in each step and evaluate observable 
after sufficiently many steps for decorrelation (sweep is N steps) 



What is             ?( )RaY
Variational form.: the space determines quality of approximation.
 
Having basis functions that approximate solutions reduces 
number of basis functions needed: reduce (linear algebra) cost. 
 
Simple and effective: choose wave functions that are products 
(independence) of single particle wave functions (simple problem) 
 
 ( ) ( ) ( ) ( )1 1 2 2 N N

R r r rY y y y=   

 
For electrons we need wave functions that are anti-symmetric 
 

 ( ) ( ) ( ) ( ) ( ) ( )( )( )
( )

1 1 2 2
det

N N j i
P R

R P r r r rY y y y y=  =å   

            Slater determinants 
 

We use ( ) ( ) ( )U R
R e RY Y-=  but extra factor is cheap 



Slater Determinants / Matrices
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 Slater matrix 

 

( ) ( )detR AY =  
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Slater Determinants / Matrices

 The standard algorithm maintains an explicit copy of the 
inverse matrix

 For an accepted move the inverse is updated using the 
Sherman-Morrison or Woodbury formula (if multiple particles 
are moved at once) – cost O(N3)

 The explicit inverse is useful as the local energy (Hamiltonian) 
requires 

 once per sweep (for all i) and so each column of the inverse will 
be used
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Approximate Determinant Ratio

Major cost computing 
( )
( )

det

det

A

A


 where ( )ij j i

a rf=  and moving particle k, 

( )kj j k
a rf=   - so one row of matrix is changed. 

 
Many ways to compute ratio, but needs to be done many, many times. 
Order-N method requires moving all particles once at ( )O N  cost. 

Current methods ( )3O N  

 
Ratio: 11 T

k
u A e-+  

Approximate by solving linear system, generalized eigenvalue problem, 
estimate bilinear form, …  (many more possible ways) 
Difficulty is solving a simple problem very fast, many times 
 
Cost depends on sparsity of matrix – decay/locality of orbitals  
Depends on type of problem: insulator, semiconductor, metallic, … 



Optimally Sparse Slater Matrices

 For sufficiently localized basis functions the matrix is 
(quite) sparse

 This can be achieved by optimizing the basis of 
(standard) single particle wave functions to obtain 
maximally localized (Wannier) basis functions

 A change of basis does not change the solution to the 
variational problem

 Reduces computation of Slater matrices to , but 
determinant ratios still per sweep (N steps)

 Our methods work for any system where the matrix can 
be made sparse or fast matvec possible

 For metallic systems optimizing locality may not work, 
but other approaches might be possible



Generic Sparsity Pattern (reordered)
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Krylov Methods Crash Course
Consider Ax b=  and no (or explicit) preconditioning. 
Given 0x  and 0 0r b Ax= - , compute optimal update z  from  

( ) 1
0 0 0 0, span{ , , , }m mK A r r Ar A r-=  : 

 
( )
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Let 2 1
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m
mK r Ar A r A r-é ù= ê úë û , then mz K z= , 

and we must solve the following least squares problem 

 2
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m
mAK r Ar A r A r rz zé ù»  »ê úë û  

Do this accurately and efficiently every iteration for increasing m . 
Arnoldi recurrence: 1 mm mAV V H+= , where 1 0 0 2

/v r r= , 

1 1 1

H

m m mV V I+ + += , and ( ) ( )1 1range rangem mV K+ +=  

0 1 1 0 1 1 02 2 22 2m mm m m m m mr AV y V e r V H y e r H y+ +- = - = -  

GMRES, Saad&Schultz '86



Krylov Methods Crash Course
Consider Ax b=    (or preconditioned system PAx Pb= ) 
Given 0x  and 0 0r b Ax= - , compute optimal update 

m
z  from  

( ) 1
0 0 0 0, span{ , , , }m mK A r r Ar A r-=  : 
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b A x z r Az
Î Î
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Let 2 1
0 0 0 0

m
mK r Ar A r A r-é ù= ê úë û , then mz K z= , 

and we must solve the following least squares problem 

 2
0 0 0 0 0

m
mAK r Ar A r A r rz zé ù»  »ê úë û  

GMRES – Saad and Schulz '86, GCR – Eisenstat, Elman, and Schulz '83 
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Minimum Residual Solutions: GMRES
Solve Ax b= : Choose 

0
x ; set 

0 0
r b Ax= - ; 

1 0 0 2
v r r= , 0k = . 

while 
2k

r e³‖ ‖  do 

 1k k= +       
 

1k k
v Av+ = ; 

 for 1j k=  , 
  *

, 1j k j k
h v v +=  ; 

1 1 ,k k j k j
v v h v+ += -  ; 

 end 
 

1, 1 2k k k
h v+ +=  ; 

1 1 1,k k k k
v v h+ + +=  ; 

 Solve LS 
1 0 2 2

min kr Hz h z-   ( )
2k

r=  by construction  

 (in practice we update the solution each step) 
end 

0k k
x x V z= + ; 

( )0 1 1 1 0k kk k k
r r V H V r Hz h z+ += - = -  or simply 

k k
r b Ax= -  

GMRES, Saad & Schultz '86



Krylov Spaces
Krylov space is a space of polynomials in a matrix times a vector. 
 
Krylov space inherits the approximation properties of  
polynomials on the real line or in the complex plane. 
 
Let A  be diagonalizable, 1A V VL -=  (simplify explanation) 
Then 2 1 1 2 1A V V V V V VL L L- - -= =  and generally 1k kA V VL -= . 
So, the polynomial ( ) 0 1

m
m m
p t t ta a a= + + +  applied to A  gives 

 
 ( ) ( )2 1

0 1 2
m

m m
p A V I Va a L a L a L -= + + + +  and hence 

 ( ) ( ) ( ) ( )( )1 1
1

diag , ,
m m m m n
p A Vp V V p p VL l l- -= =   

 
The polynomial is applied to the eigenvalues individually.  
 
Approximate solutions to linear systems, eigenvalue problems, 
and more general problems using polynomial approximation can 
be analyzed/understood this way. 



Approximation by Matrix Polynomials
Let 1A V VL -= , let ( )AL WÌ Ì  . 

If ( )1
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If we can construct such polynomials for modest m , we have an 
efficient  linear solver.  
 
This is possible if the region W  is nice – small region away from 
origin: clustered eigenvalues 
 
If this is not the case, we improve by preconditioning:  PAx Pb=    
s.t. PA  has clustered eigenvalues and product with P  is cheap. 



Approximation by Matrix Polynomials
Let 1B V VL -= , let ( )BL WÌ Ì  . 
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Furthermore, let 0e »  and 

i j
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If we can construct such polynomials for modest m  we have an 
efficient  linear solver or eigensolver. 



Convergence Bounds

Residual at iteration m: ( ) 0m m
r p A r=   optimal (2-norm) 

 

Eigenvalue bound 
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FOV bound 
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Alternative FOV bound 
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Pseudospectrum bound 
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Preconditioned Iterative Solver
 Compute determinant ratios by preconditioned iterative solve

 efficient for sparse matrices if fast convergence
 more generally need preconditioned matvec to be cheap

 Iterative solver with ILU (ILUTP) converges well, but 
 matrix degrades due to continual updating – particle moves
 loss of diag. dom. leads to unstable ILU decomposition
 need periodic reordering of matrix and recomputing prec.
 reordering aims to pair orbitals with nearby particles
 recomputing ILU expensive, so compute cheap updates to 

preconditioner (until more expensive than new ILU)
 Three improvements:

 cheap updates to the preconditioner
 cheap way to monitor instability
 effective reordering of matrix for diagonal dominance



Cheap Updates to Preconditioner
Assume we have a good preconditioner: AP  is nice (e.g., spectrum) 
 

Update ( )1T T
k k k

A A e u A I A e u-= + = +  

Update preconditioner: ( ) ( )1
1 T T
k k k

P I A e u P I wu P
-

-= + = -  with 

     ( ) 11 11 T
k k k

w u A e A e
-

- -= +    (already available for determinant ratio) 

 
Note that breakdown occurs with zero probability 
 
By construction AP AP=  , so has same favorable properties 

Increasing cost in applying sequence of products of type ( )TkI wu-  

At some point cheaper to recompute ILU  
 
Links with update exact inverse in Broyden type methods (book Kelley) 
and updating preconditioners in Bergamaschi et al.  



Effective Stability of Preconditioner
Compute incomplete decomposition A LU R= +  (ignore all or some fill-in) 
 
Accuracy of preconditioner: 

F
A LU-  

 

Stability of preconditioner: ( ) 1
F

I A LU
-

-  

 
(papers by Benzi, Saad, Chow) 
  
In general stability the most important, but metric expensive to compute.  
 

Replace by effective or local stability: ( ) 1
2

max
i i i
v A LU v

-
-  

 
The 

i
v  are (ortho)normal vectors in the Arnoldi recurrence. If local stability 

small, then the preconditioner is stable over the Krylov space. 
Even if the preconditioner is not stable (over whole space). 



Reordering Algorithm



Matrix Reordering 

 Greedy algorithm based on geometry
 Variant of Edmunds '98 (control)

 At each step:
 Pick new particle (from remaining)

 Find nearest orbital (swap columns to give same index)
 If same as current find nearest particle to that orbital 

(swap rows to give same index)

 Greedy algorithms can be far from optimal, but usually quite 
effective

 Considering other algorithms for improving near diagonal 
dominance (Duff and Koster, HSL lib/RAL)

 Really want local incremental update of ordering



Effect of Reordering and ILUTP



Results for Model Problem

 BCC lattice with Gaussian orbitals =
 Parameter = 1, 
 size of cube ≈ 2 ( ⁄ particles per unit volume)
 = 2 particles

 Check accuracy, statistics, and scaling (in time)



Results for Model Problem

Probability wrong decision in Metropolis algorithm: 

( ) ( )min ,1 min ,1
a

f q q= -

Average f over random walk (MCMC sequence) gives expected 
number of  errors in acceptance/rejection test

extremely good: f  < 0.0001
very good: f < 0.001
good: f < 0.01



Cost Analysis of Algorithm



Timing Comparison

Scaling (fit to power law):
std algorithm: O(n2.67)
new algorithm: O(n2.19)

For large n standard algorithm will be cubic (based on 
algorithm)

Several ways to improve scaling new algorithm



Timing/Scaling Comparison



Further Improvements for Current Approach

 Better data structures – reduce overhead ~20%
 Change # steps of cheap preconditioner update –

better scaling (better time)
 Improve reordering global algorithm

 Faster and/or better diagonal dominance
 Better preconditioners (reduce iterations)

 Change reordering to incremental local reordering
 Faster and better scaling

 Compute bilinear form solving two systems by BiCG
 Products of residual norms governs convergence (exact)
 In practice, property is lost relatively quickly
 Clever algorithm by Strakos and Tichy preserves 

property in floating point arithmetic 



Conclusions and Future Work

 Significant improvement in scaling for QMC
 Several further improvements obvious (but 

implementation not necessarily easy)
 Improve reordering – local and incremental
 Better, multi-level preconditioners

 easier to update
 use underlying structure – physics, interpolation

 Test on several realistic materials
 For metallic systems need something for (nearly) 

dense matrices
 Fast matrix vector products possible?
 Representation? 
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