Fermions?

e How can we do fermion simulations? The initial condition can
be made real but not positive (for more than 1 electron in the
same spin state)

e In transient estimate or released-node methods one carries
along the sign as a weight and samples the modulus.

0(t)= e "' sign(@(R, 0)) | §(R, 0) |

e Do not forbid crossing of the nodes, but carry along sign when
walks cross.
e What’s wrong with node release:
- Because walks don’ t die at the nodes, the computational
effort increases (bosonic noise)

- The signal is in the cancellation which dominates

Monte Carlo can add but not subtract
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Transient Estimate Approach
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e W(B) converges to the exact ground state

e E is an upper bound converging to the exact answer
monotonically
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Model fermion problem: Particle in a box

Symmetric potential: V(r) =V(-r)
Antisymmetric state: f(r)=-f(-r)

Initial (trial) state - Final (exact) state

Negative walkers

Sign of walkers fixed by initial position. They are allowed to diffuse freely.
f(r)= number of positive-negative walkers. Node is dynamically established by
diffusion process. (cancellation of positive and negative walkers.)
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Scaling in Released-Node

Initial distribution Later distribution

e At any point, positive and negative walkers will tend to cancel
so the signal is drown out by the fluctuations.

e Signal/noise ratio is : e ErEsl t=projection time
Er and E; are Fermion, Bose energy (proportional to N)

e Converges but at a slower rate. Higher accuracy, larger t.

e For general excited states: oafEy NG
Exponential complexity! CPUtimeo< ¢ g

e Not a fermion problem but an excited state problem.

e Cancellation is difficult in high dimensions.
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Exact fermion calculations

e Possible for the electron
gas for up to 60
electrons.

e 2DEG at rs=1 N=26
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General statement of the
“fermion problem”

e Given a system with N fermions and a known
Hamiltonian and a property O. (usually the energy).

e How much time T will it take to estimate O to an
accuracy €?How does T scale with N and €?

e If you can map the quantum system onto an equivalent
problem in classical statistical mechanics then:

T o< N%e72 With 0 <ot < 4
This would be a “solved” quantum problem!

*All approximations must be controlled!
*Algebraic scaling in N!

e.g. properties of Boltzmann or Bose systems in equilibrium.
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“Solved Problems”

e 1-D problem. (simply forbid exchanges)
e Bosons and Boltzmanons at any temperature

e Some lattice models: Heisenberg model, 1/2 filled Hubbard
model on bipartite lattice (Hirsch)

e Spin symmetric systems with purely attractive interactions:
u<0 Hubbard model, nuclear Gaussian model.

e Harmonic oscillators or systems with many symmetries.
e Any problem with <i|H|j> <0

¢ Fermions in special boxes

e Other lattice models

e Kalos and coworkers have invented a pairing method but it is
not clear whether it is approximation free and stable.
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The sign problem

e The fermion problem is intellectually and technologically
very important.

e Progress is possible but danger-the problem maybe
more subtle than you first might think. New ideas are
needed.

e No fermion methods are perfect but QMC is competitive
with other methods and more general.

e The fermion problem is one of a group of related
problems in quantum mechanics (e.g dynamics).

e Feynman argues that general many-body quantum
simulation is exponentially slow on a classical computer.

e Maybe we have to “solve” quantum problems using
“analog” quantum computers: programmable quantum
computers that can emulate any quantum system.
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Fixed-node method

e [Initial distribution is a pdf. )
It comes from a VMC simulation.f(R>0) = |‘//T(R)|

e Drift term pushes walks away
from the nodes.

e Impose the condition: ¢(R)=0 when y;(R)=0.
e This is the fixed-node BC

. . EFN 2 EO
¢ Will give an upper bound to the
exact energy, the best upper £, = if ¢,(R)w(R)=0 allR
bound consistent with the FNBC. ’ bRy

of(R,t) has a discontinuous gradient at the nodal location.
eAccurate method because Bose correlations are done exactly.

eScales well, like the VMC method, as N3. Classical complexity.

eCan be generalized from the continuum to lattice finite
temperature, magnetic fields, ...

¢One needs trial functions with accurate nodes.
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Proof of fixed-node theorem

Suppose we solve S.E. in a subvolume V determined by
the nodes of an antisymetric trial function.

ﬁ¢FN =E, ¢, insideV

Extend the solution to all space with the permutation operator.

n 1 P

Gy (R) =m§(—1) 9, (PR)

Inside a given sub-volume only permutations of a given sign () contribute.
Hence the extend solution is non-zero.

Evaluate the variational energy of the extended trial function.
3 (-1)"" [drg;(PR) A9, (P'R)
EO S - P+P' * = EFN S EVMC
Y(<1)" [arg;(PR)s,, (P'R)

PP'

Surfaces do not contribute to the integral since the solution vanishes there.
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Nodal Properties

If we know the sign of the exact wavefunction (the nodes), we
can solve the fermion problem with the fixed-node method.

e If f(R) is real, nodes are f(R)=0 where R is the 3N dimensional
vector.

¢ Nodes are a 3N-1 dimensional surface. (Do not confuse with
single particle orbital nodes!)

» Coincidence points r; = r; are 3N-3 dimensional hyper-planes
e In 1 spatial dimension these “points” exhaust the nodes:

fermion problem is easy to solve in 1D with the “no crossing
rule.”

e Coincidence points (and other symmetries) only constrain
nodes in higher dimensions, they do not determine them.

e The nodal surfaces define nodal volumes. How many nodal
volumes are there? Conjecture: there are typically only 2
different volumes (+ and -) except in 1D. (but only
demonstrated for free particles.)
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Nodal Picture:
2d slice thru 322d space

\,,, \Yd

e Nodes pass thru
their positions \ Q
e Divides space O
into 2 regions
e Wavelength
given by
interparticle
spacing

Fig. 3. A 2D cross section of the ground-state wave function of 161 free (polarized) fermions
in a periodic square. All 161 particle positions were sampled using variational Monte Carlo
from $(R)%. The filled circle indicates the original position of the first particle. The other 160
particles are fixed at positions indicated by the open circles, and nodes of the wave function
as a function of the position of the first particie are plotted. The resolution of the contouring
program is approximately half of the fine scale shown around the border of the plot.

* Free electron \
e Other electrons
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SPIN?

e How do we treat spin in QMC?
e For extended systems we use the S, representation.

e We have a fixed number of up and down electrons and
we antisymmetrize among electrons with the same spin.

e This leads to 2 Slater determinants.

e For a given trial function, its real part is also a trial
function (but it may have different symmetries), for
example momentum

( ez‘kr’e—ikf) or (cos(ki’),Sin(kr ))

e For the ground state, without magnetic fields, spin-orbit
interaction we can always work with real functions.

e However, in some cases it may be better to work with
complex functions.
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Fixed-Phase method
Ortiz, Martin, DMC 1993

¢ Generalize the FN method to complex trial functions: W (R) = e_U(R)

e Since the Hamiltonian is Hermitian, the variational energy is
real:

[ar 0 ® [y (R)+ AVUR) = A[RVUR)] +A[SVUR) |
E =
4 de e—ZSRU(R)

e We see only one place where the energy depends on the
phase of the wavefunction.

e We fix the phase, then we add this term to the potential
energy. In a magnetic field we get also the vector potential.

effective potential=V (R) + Z A [A (r)+ SV,.U(R):l2

e We can now do VMC or DMC and det upper bounds as before.

e The imaginary part of the local energy will not be zero unless
the right phase is used.

e Used for twisted boundary conditions, magnetic fields,
vortices, phonons, spin states, ...
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