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Fermions? 
•  How can we do fermion simulations?  The initial condition can 

be made real but not positive (for more than 1 electron in the 
same spin state) 

•  In transient estimate or released-node methods one carries 
along the sign as a weight and samples the modulus. 

•  Do not forbid crossing of the nodes, but carry along sign when 
walks cross. 

•  What’s wrong with node release: 
–  Because walks don’t die at the nodes, the computational 

effort increases (bosonic noise) 
–  The signal is in the cancellation which dominates 

Monte Carlo can add but not subtract 
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Transient Estimate Approach 

•  Ψ(β)  converges to the exact ground state 
•  E is an upper bound converging to the exact answer 

monotonically 
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Model fermion problem: Particle in a box 
Symmetric potential: V(r) =V(-r)   
Antisymmetric state:  f(r)=-f(-r) 

Initial (trial) state Final (exact) state 

Sign of walkers fixed by initial position. They are allowed to diffuse freely. 
f(r)= number of positive-negative walkers. Node is dynamically established by 
diffusion process. (cancellation of positive and negative walkers.) 

Positive walkers 

Negative walkers 

Node 
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Scaling in Released-Node 

•  At any point, positive and negative walkers will tend to cancel 
so the signal is drown out by the fluctuations. 

•  Signal/noise ratio is :    t=projection time 
 EF and EB are Fermion, Bose energy (proportional to N) 

•  Converges but at a slower rate. Higher accuracy, larger t. 
•  For general excited states: 

 Exponential complexity! 
•  Not a fermion problem but an excited state problem. 
•  Cancellation is difficult in high dimensions.  

Initial distribution Later distribution 
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Exact fermion calculations 
•  Possible for the electron 

gas for up to 60 
electrons. 

•  2DEG at  rs=1  N=26 

•  Transient estimate 
calculation with SJ and 
BF-3B trial functions. 
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General statement of the  
“fermion problem” 

•  Given a system with N fermions and a known 
Hamiltonian and a property O. (usually the energy). 

•  How much time T will it take to estimate O to an 
accuracy ε? How does T scale with N and ε? 

•  If you can map the quantum system onto an equivalent 
problem in classical statistical mechanics then: 

2NT −∝ εα With 0 <α < 4  
This would be a “solved” quantum problem! 
• All approximations must be controlled!  
• Algebraic scaling in N! 
e.g.  properties of Boltzmann or Bose systems in equilibrium. 
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“Solved Problems” 

•  1-D problem. (simply forbid exchanges) 
•  Bosons and Boltzmanons at any temperature 
•  Some lattice models: Heisenberg model, 1/2 filled Hubbard 

model on bipartite lattice (Hirsch) 
•  Spin symmetric systems with purely attractive interactions: 

u<0 Hubbard model, nuclear Gaussian model. 
•  Harmonic oscillators or systems with many symmetries. 
•  Any problem with <i|H|j> ≤ 0  
•  Fermions in special boxes 
•  Other lattice models 

•  Kalos and coworkers have invented a pairing method but it is 
not clear whether it is approximation free and stable. 
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The sign problem 

•  The fermion problem is intellectually and technologically 
very important. 

•  Progress is possible but danger-the problem maybe 
more subtle than you first might think. New ideas are 
needed. 

•   No fermion methods are perfect but QMC is competitive 
with other methods and more general. 

•  The fermion problem is one of a group of related 
problems  in quantum mechanics (e.g dynamics).   

•  Feynman argues that general many-body quantum 
simulation is exponentially slow on a classical computer.  

•  Maybe we have to “solve” quantum problems using 
“analog” quantum computers: programmable quantum 
computers that can emulate any quantum system.  
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Fixed-node method 
•  Initial distribution is a pdf.   

 It comes from a VMC simulation. 
•  Drift term pushes walks away 

from the nodes. 
•  Impose the condition: 
•  This is the fixed-node BC 

•  Will give an upper bound to the 
exact energy, the best upper 
bound consistent with the FNBC. 
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• f(R,t) has a discontinuous gradient at the nodal location. 
• Accurate method because Bose correlations are done exactly.  
• Scales well, like the VMC method, as N3. Classical complexity. 
• Can be generalized from the continuum to lattice finite 
temperature, magnetic fields, … 
• One needs trial functions with accurate nodes. 
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Proof of fixed-node theorem 
Suppose we solve S.E. in a subvolume V determined by 
the nodes of an antisymetric trial function.   

ĤφFN = EFNφFN    inside V

Extend the solution to all space with the permutation operator.

φ̂FN (R) ≡ 1
N !

−1( )
P
∑ P

φFN PR( )
Inside a given sub-volume only permutations of a given sign (±) contribute.
Hence the extend solution is non-zero.
Evaluate the variational energy of the extended trial function.

E0 ≤
−1( )

PP '
∑ P+P '

dR∫ φFN
* PR( ) ĤφFN P 'R( )

−1( )
PP '
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= EFN ≤ EVMC

Surfaces do not contribute to the integral since the solution vanishes there.
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Nodal Properties 
If we know the sign of the exact wavefunction (the nodes), we 

can solve the fermion problem with the fixed-node method. 
•  If f(R) is real, nodes are f(R)=0 where R is the 3N dimensional 

vector.  
•  Nodes are a 3N-1 dimensional surface. (Do not confuse with  

single particle orbital nodes!) 
•  Coincidence points ri  = rj are  3N-3 dimensional hyper-planes 
•  In 1 spatial dimension these “points” exhaust the nodes: 

fermion problem is easy to solve in 1D   with the “no crossing 
rule.” 

•  Coincidence points (and other symmetries) only constrain 
nodes in higher dimensions, they do not determine them. 

•  The nodal surfaces define nodal volumes. How many nodal 
volumes are there? Conjecture: there are typically only 2 
different volumes (+ and -) except in 1D. (but only 
demonstrated for free particles.) 
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Nodal Picture:  
2d slice thru 322d space 

•  Free electron 
•  Other electrons 

•  Nodes pass thru 
their positions  

•  Divides space 
into 2 regions 

•  Wavelength 
given by 
interparticle 
spacing 
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SPIN? 
•  How do we treat spin in QMC? 
•  For extended systems we use the Sz representation. 
•  We have a fixed number of up and down electrons and 

we antisymmetrize among electrons with the same spin. 
•  This leads to 2 Slater determinants. 
•  For a given trial function, its real part is also a trial 

function (but it may have different symmetries), for 
example momentum 

•  For the ground state, without magnetic fields, spin-orbit 
interaction we can always work with real functions. 

•  However, in some cases it may be better to work with 
complex functions. 

( ) ( ),    or   cos( ),sin( )   ikr ikre e kr kr−
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Fixed-Phase method 
Ortiz, Martin, DMC 1993 

•  Generalize the FN method to complex trial functions: 
•  Since the Hamiltonian is Hermitian, the variational energy is 

real: 

•  We see only one place where the energy depends on the 
phase of the wavefunction. 

•  We fix the phase, then we add this term to the potential 
energy. In a magnetic field we get also the vector potential.  

•  We can now do VMC or DMC and get upper bounds as before. 
•  The imaginary part of the local energy will not be zero unless 

the right phase is used. 
•  Used for twisted boundary conditions, magnetic fields, 

vortices, phonons, spin states, …  
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