QMCPACK
1.0

Generated by Doxygen 1.8.1

Mon Jul 23 2012 05:55:10

Contents

1 QMCPACK Documentation 1
1.1 Introduction e e 1
1.2 Majorchanges o e e e e e e e e 2

2 Getting started 3
2.1 Requiredtools and libraries 3

2.1.1 Externalpackages 4
2.2 Advanced:cmake e e e e 4
2.2.1 Shortintroductiontocmake L 4
2.2.2 Customizing acmake toolchainfile L 5

3 QMCPACKI/O 7

3.1 Maininputfile L 7
3.1.1 About XML in QMCPACK e 8
3.1.2 Reserved attributes and their implicit relationships 9

3.2 Generic XML elements L e 9
3.2.1 parameter e e 9
3.22 include 10
3.2.3 attrib . . 10

3.3 simulation: Rootelement L 10

3.4 Defining physical entities e 11
341 gmesystem L L e e 11
3.4.2 simulationcello L e 12
3.4.3 particleset L e 14

3.4.3.1 group e e e e e 15
3.4.4 hamiltonian e e e 16
3441 pairpot e 17
3.4.5 wavefunction L e 17

ii CONTENTS

4 Interface Utilities 19
4.1 Quantum @SPreSSO v v i i e e e e e e e e 19
41.1 Generating wavefunction files from PWSCF 20

4.1.2 Using the converted files in QMCPACK o 20

4.1.3 Molecular calculationsusing PWecodes 21

4.2 GaAMESS . . . o i e e e 21
4.3 wfconvertpackage e e 21

5 QMC School 2012 23
5.1 BasicsonForge at NCSA e 23
5.2 Setups for QMCPACK e 23

6 Using PWSCF and QMCPACK to perform total energy calculations of condensed systems 25
6.1 Introduction e e 25
6.2 Initial DFT Calculations e 25
6.2.1 Pseudopotentials L 26

6.3 Creating and testing wavefunctions for QMCPACK o 26
6.3.1 Extracting Wavefunctions at Particular k-points 27

6.4 Optimizing Jastrow Factors within QMC 27
6.4.1 Testing Convergence of the Splinesin QMCPACK 31

6.5 Performing DMC Calculations 32
6.5.1 Two-Body Finite Size Effects 35

6.5.1.1 Creatingand Using Supercells 35

6.5.1.2 Two-Body Finite Size Corrections 36

6.5.2 Puttingitall Together 37

6.6 ConCluSiON L e e 37
6.7 Acknowledgment L L e 37

7 Guide for the developers 39
7.1 About QMCPACK e e e 39
7.2 Documentation L e e e e 39
7.3 Howtoaddapagetothisdocument e 40

8 Construction of a many-body wavefunction 41
8.1 wavefunction. L e 41

9 Frequently Asked Questions 43
9.1 General qUESHIONS L L e e e 43
9.1.1 Compilers e 43

Generated on Mon Jul 23 2012 05:55:10 for QUCPACK by Doxygen

CONTENTS iiii
9.1.2 Parallelization in QMCPACK 43

9.1.3 Numerical libraries e 43

9.2 Running QMCPACK e 44
9.2.1 Using multiplethreads e 44

9.22 Howtorun QMCPACK with MPI o 44

9.3 Buildproblems e 44
9.3.1 Failedtolink blas/lapack 44

9.32 Failedtolink MKL e 44

9.3.3 Failedtofind XYZpackage 45

10 University of lllinois/NCSA Open Source License 47
11 File Index 49
11.1 File List . . . o e 49

12 File Documentation 51
12.1 developers.html File Reference 51
12.2 fag.html File Reference e 51
12.3 forge.html File Reference 51
12.4 gettingstarted.html File Reference 51
12.5 inputxmlhtml File Reference e 51
12.6 license.html File Reference 51
12.7 othertools.html File Reference e 51
12.8 gmcpack_main.html File Reference 51
12.9 solids_cecam2012.html File Reference e 51
12.10wavefunctionbuilder.html File Reference 51

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

Chapter 1

QMCPACK Documentation

1.1 Introduction

QMCPACK, an open-source QMC simulation code written in C++, implements advanced QMC algorithms for large-
scale parallel computers. Designed with the modularity afforded by object-oriented architecture, it makes extensive use
of template metaprogramming to achieve high computational efficiency through inlined specializations. It utilizes a hybrid
OpenMP/MPI approach to parallelization to take advantage of the growing number of cores per SMP node. Finally, it
utilizes standard file formats for input and output in XML and HDF5 to facilitate data exchange.

Main contributing authors are Jeongnim Kim and the members of the electron structure group of Profs. Ceperley and
Martin at University of lllinois.

Special thanks to these developers who are responsible for core capabilities:

» K. Esler: einspline, CUDA port, improved numerical algorithms, tools
+ J. McMinis: optimization and advanced QMC drivers
* M. Morales: implementation of advanced wavefunctions

L. Shulenburger: tools

Different parts of the code are written by different people, whose names are usually signed at the top of each file. If
you are interested in participating in QUCPACK development, email to Jeongnim Kim. QMCPACK is available
under University of IT11inois/NCSA Open Source License (0OSI approved)

QMCPACK development at the Materials Computation Center was supported by the National Science Foundation under
grant no. DMR-03 25939 ITR, with additional support through the Frederick Seitz Materials Research Laboratory (U.S.
Dept. of Energy grant no. DEFG02-91ER45439) at the University of lllinois Urbana-Champaign and National Center for
Supercomputing Applications.

Currently, the principal authors are funded by

» PetaApps, supported by the U. S. National Science Foundation

« ORNL LDRD

We acknowledge OLCF and ALCF for help and support in accessing their resources through INCITE program supported
by US Department of Energy and NCSA, TACC and NICS for providing resources through NSF TeraGrid allocations.

file:jeongnim.kim@gmail.com
http://www.opensource.org/licenses/UoI-NCSA.php

2 QMCPACK Documentation

1.2 Major changes

2012-06-01

» Energy/Linear optimization, Umrigar et al, PRL, 2007

« Efficient multi determinant updates, Clark et al, JCP 2011
» Supports for backflow

» Core functionalities ported on CUDA

» Bug fixes

 Tutorials are added

2008-07-22

* Numerous bug fixes.
» Support TrialWaveFunction cloning for multi-threaded applications
« EinsplineOrbitalSet uses Einspline library

» BsplinFunctor for One- and Two-Body Jastrow

2005-07-25

+ updated doxygen documentations
+ docs directory is added to cvs repository.
» To generate doxygen documentation on a local host,

— cd docs; doxygen Doxyfile

— doxygen/html/index.html is the main page

« Introduced groups that follow the directory structure

Orbital group

Orbital builder group

Many-body wave function group

Hamiltonian group

QMC Driver group

QMC Drivers using walker-by-walker update
— QMC Drivers using particle-by-particle update
— QMC Drivers for energy differences

— QMC Application group

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

http://link.aps.org/doi/10.1103/PhysRevLett.98.110201
http://dx.doi.org/10.1063/1.3665391

Chapter 2

Getting started

« Download source via svn

— Developers’ version:

svn co https://subversion.assembla.com/svn/qmcdev/trunk gmcpack

— Stable public version :

svn co http://agmcpack.googlecode.com/svn/trunk/ gmcpack

» Build where everything is installed in standard directores, /usr, /usr/local Throughout this guide, we will use QMC-
PACK_HOME to denote the QMICPACK’s top directory.

cd gmecpack/build
cmake ..
make -3j4

Use any number of threads for parallel make. The example above used 4 threads with -j4 option. More on how to build
QMCPACK can be found at wiki. If everything goes well, then you should see gmcpack/build/bin/gqmcapp.

To run QMCPACK using 8 threads:

export OMP_NUM_THREADS=8
OMCPACK_HOME /build/bin/gmcapp input.xml

Here, input.xml is the main input file, a valid XML file. Tutorials have a number of common use cases of QCPACK.

2.1 Required tools and libraries

* C/C++ compilers
+ cmake, build utility, http: //www.cmake.org/

* blas/lapack, numerical library, use platform-optimized libraries

On any platform, vendor provided numerical libraries should be used. Other factor to consider in selecting Blas/Lapack
is the compilers.

http://qmcpack.cmscc.org/getting-started/cmake-101
http://www.cmake.org/

4 Getting started

2.1.1 External packages

In order to install QMCPACK, users have to install several required packages. These packages are included in standard
Linux/cygwin distributions or can be downloaded by following the links. Installing these libraries with the source codes
is straightforward. Because the header files are included by QMCPACK, it is important to install developers’ version of
each library. If these libraries are installed in standard directories, /usr /usr/local and /sw (Mac), no action is necessary.
Alternatively, environment variables XYZ_HOME should be set. Here, XYZ stands for the name of package; the build
utility can locate the libraries and use them.

With few exceptions, the build utility cmake will look for XYZ_HOME/include for the header files and XYZ_HOME/lib
for the library files. When multiple environment variables apply to a library, e.g., blas/lapack, the library is searched
according to the listed order.

External package category Env. variable URL

hdf5 I/0 HDF5_HOME http://www.-
hdfgroup.org/HD-
F5/

libxml2 I/0 LIBXML2_HOME http://xmlsoft.-
org/

boost C++ standard library BOOST_HOME http://www. -
boost.org

fftw FFT library FFTW_HOME http://www. fftw. -
org

2.2 Advanced: cmake

2.2.1 Short introduction to cmake

cmake is a portable build system and is widely used for large-scale software development projects such as VTK. How
cmake works is similar to autoconfig/automake. cmake uses CMakelLists.txt files (cmake scripts) to generate Makefiles
with complete dependency analysis. CMakeLists.txt are equivalent to Makefile.am.

QMCPACK_HOME contains

CMakeLists.txt

src
CMakeLists.txt
QMCWaveFunctions/CMakeLists.txt
OMCHamiltonians/CMakeLists.txt
OMCApp/CMakeLists.txt

Always use out-of-source compilation with cmake, i.e., never build QMCPACK in QMCPACK_HOME. We can further
separate the source (development) and build. One can build multiple executables in different locations by creating new
directories and build QMCPACK in each directory.

/home/foo/build/gcc-real
/home/foo/build/gcc-complex
/home/foo/build/mpi-real

In each directory, e.g., /home/foo/build/gcc-real (after secodeing the environments properly), execute

cd /home/foo/build/gcc-real
cmake /home/foo/src/gmcpack
make

There is no need to change sources or cmake files. If something goes wrong, simply remove the directory and start
over.

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
http://xmlsoft.org/
http://xmlsoft.org/
http://www.boost.org
http://www.boost.org
http://www.fftw.org
http://www.fftw.org

2.2 Advanced: cmake 5

2.2.2 Customizing a cmake toolchain file

Setting environment variables and modifying cmake files can be tedious and often lead to failure at the cmake (configure)
stage. One can set up a script to set all the tool chains which will be noted as a toolchain file Using a toolchain
file is particularly useful on the HPC systems that have different login and compute nodes and require cross compiling.
Consult wiki

config directory has specialized toolchain files for the HPC systems the developers routinely use. They are regularly
updated with the system changes. Users can edit a script for their environments. Note that where the toolchain file
reside is not important. You can copy a reference toolchain file in the working directory and change the local copy as
needed.

cd QMCPACK_HOME/build

cp ../config/TitanGNU.cmake .

cmake —-DCMAKE_TOOLCHAIN_FILE=TitanGNU.cmake ..
cmake —-DCMAKE_TOOLCHAIN_FILE=TitanGNU.cmake ..
make

Note that cmake is excecuted twice to ensure cmake variables are properly cached and updated.

Here, we discuss how to prepare a toolchain file for your environment using config/TitanGNU.cmake as an example.
TitanGNU is a deca-petaflop system at ORNL running a varient of LINUX. As the name implies, GNU compilers and
GNU programming environment is used and the same compiler options are tailored to the AMD processors. CMake
wiki lists the cmake system variables with CMAKE_ prefix, such as CMAKE_CXX_COPMILER for C++ compiler.

 Setting system properties: only static libraries can be used for the compute nodes.

SET (CMAKE_SYSTEM_PROCESSOR "XT5")
SET_PROPERTY (GLOBAL PROPERTY TARGET_SUPPORTS_SHARED_LIBS FALSE)

+ Setting compilers and compiler options

#set cmake variables for the compilers
set (CMAKE_C_COMPILER /opt/cray/xt—asyncpe/5.05/bin/cc)
set (CMAKE_CXX_COMPILER /opt/cray/xt-asyncpe/5.05/bin/CC)

#temporary variables for GNU compilers
set (GNU_OPTS "-DADD_ -DINLINE_ALL=inline")
set (GNU_FLAGS "-fopenmp -03 -Drestrict=__restrict__ -finline-1imit=1000

—fstrict-aliasing -funroll-all-loops -Wno-deprecated ")
set (XT_FLAGS "-march=bdverl -msse3 -D_CRAYMPI"

#set C/C++ compiler flags
set (CMAKE_CXX_FLAGS "${XT_FLAGS} ${GNU_FLAGS} -ftemplate-depth-60 ${GNU_OPTS}")
set (CMAKE_C_FLAGS "S${XT_FLAGS} ${GNU_FLAGS} -std=c99")

« Setting search locations for external libraries

set (CMAKE_FIND_ROOT_PATH
/opt/cray/hdf5/1.8.6/gnu/46
/opt/fftw/3.3.0.0/interlagos
/sw/xk6/boost/1.44.0/cled4.0_gnud.5.3
/ccs/proj/mat034/3nkim/xk6/gnud5/1libxml2
Jopt/fftw/3.2.1

+ Setting configuration properties: MPI, OpenMP, etc. src/config.h is created in build directory based on these
properties.

SET (ENABLE_OPENMP 1) fienable OpenMP
SET (HAVE_MPT 1) #have MPI

SSE-related

SET (HAVE_SSE 1)

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

http://www.paraview.org/Wiki/CMake_Cross_Compiling#The_toolchain_file
http://www.cmake.org/Wiki/CMake_Useful_Variables
http://www.cmake.org/Wiki/CMake_Useful_Variables

Getting started

SET (HAVE_SSE2 1)

SET (HAVE_SSE3 1)

SET (HAVE_SSSE3 1)

SET (USE_PREFETCH 1)
SET (PREFETCH_AHEAD 12)

Special settings for Cray XT: All these variables are set to prevent dynamic linking. Not needed on normal *NIX
systems.

set (CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set (CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set (CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set (CMAKE_SHARED_LINKER_FLAGS "")

FOREACH (type SHARED_LIBRARY SHARED_MODULE EXE)
SET (CMAKE_S {type}_LINK_STATIC_C_FLAGS "-Wl,-Bstatic")
SET (CMAKE_$ {type}_LINK_DYNAMIC_C_FLAGS "-static")
SET (CMAKE_$ {type}_LINK_STATIC_CXX_FLAGS "-Wl,-Bstatic")
SET (CMAKE_$ {type}_LINK_DYNAMIC_CXX_FLAGS "-static")
ENDFOREACH (type)

Generated on Mon Jul 23 2012 05:55:10 for QUCPACK by Doxygen

Chapter 3

QMCPACK 1/0

3.1 Main input file

The input file for gmcapp (main application of QUCPACK) is a standard XML file. It handles essential parameters which
have to be modified by the users and light-weight data to define the physical problem as clearly as possible. The large
data associated with single-particle orbitals are usually generated by tools and stored in HDE'5 file for the portability and
efficiency.

<?xml version="1.0"?2>

<simulation>
<project id="TITLE" series="0"/>
<include href="PTCLXML"/> (a) problem
<include href="WFSXML"/> descriptions

<include href="HAMXML"/>
<loop max="5">
<gmc method="cslinear" move="pbyp" checkpoint="-1" >
<cost name="energy"> 0.05 </cost>
<cost name="unreweightedvariance">0.00 </cost>
<cost name="reweightedvariance"> 0.95 </cost>
</gmc> (b) optimization
</loop>
<gmc method="vmc" move="pbyp">
<parameter name="timestep">1</parameter>

<parameter name="samples">100000</parameter> (e
</gmc>
<gmc method="dmc" move="pbyp">

<parameter name="timestep">0.02</parameter>](d) dmc
</gmc>

</simulation>

Figure 3.1: A main input xml file

The input file above has the main sections

* Project name for bookkeeping
» Description of the physical system

— Electronic and/or ionic systems
— Trial wavefunction

— Hamiltonian

http://www.hdfgroup.org/HDF5/

8 QMCPACK I/0

* QMC execution

— optimization: loop is used to repeate VMC/optimization
- vimc

— dmc

Note that problem-dependent elements are defined in external xml files, e.g., ptcl.xml, and are included via include
element.

3.1.1 About XML in QMCPACK

The hierarchical nature of XML is ideally suited to the object-oriented design of QMCPACK. Throughout this document,
we will use a UML-based graphical notation to represent a XML node and its relationship with other XML nodes as
shown here.

nodeA

child nodes

attributes

owns
» 0.1

nodeB nodeC

child nodes child nodes

attributes attributes

Figure 3.2: Graphical notations for a XML node.

The opendiamond denotes the owndership: nodeA owns nodeB and nodeC. The multiplicity of child nodes of one kind
is specificed at the child-node end.

1 required
0..1 optional, maximum one
0..x optional, any number of nodes

1..x required, any number of nodes

QMCPACK uses DOM parser of 1ibxm12 library. The entire input XML file is parsed and stored in a tree which is
processed recursively. Parsing a XML file is similar to running a shell script. Each XML element (node) is mapped
to a factory or builder function to instantiate the main computational objects or to execute a class member function
to initialize of the object which owns the node. The order of XML nodes is critical to instantiate objects with proper
ownerships and roles. All these features are exploited by the developers at the design stage of a particular class and
algorithm in QMCPACK.

XML files can be manipulated by standard editors and tools including web browsers. New features can be easily added
without breaking the logical structure of the existing input files in XML. QMCPACK requires a validating XML but does
not enforce correctness with a schema. This is mainly because QMCPACK is evolving quite rapidly and the input file is
subject to change when new capabilities are added. A schema for the tested and accepted features is presented in this
document and will be updated so that the new features can be utilized by the users as soon as they become available.

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://xmlsoft.org/

3.2 Generic XML elements 9

3.1.2 Reserved attributes and their implicit relationships
These attributes are reserved to define the relationship between XML nodes.

id "unique" ID in a given XML file

name the name of an object. If idis not provided, name is used as the ID of the object.
ref refererence to an existing object

href external file name (relative path or full path)

type the object or engine to be used at the run time

target the name (ID) of the quantum particleset (e.g., electrons), or wavefunction

source the name (ID) of the source particleset

A XML element has a well-defined scope. Child nodes inherit the property of its parent node. When a XML node is
referred by ref, source and target, the named XML node has to be defined before using it.

3.2 Generic XML elements

These elements are used by other nodes

parameter set the value of a named property
include include an external file

attrib set the value of an array

3.2.1 parameter

This is a genric way to define a property of a XML element and contains

parameter =
children : text for the value
attribute : name, (units,condition)

For example, parameter sets the VMC variables:

<gmc method="vmc">
<parameter name="timestep">0.5</parameter>
<parameter name="blocks">10</parameter>
<parameter name="steps">10</parameter>
<parameter name="warmupsteps">10</parameter>
</gmc>

Remarks

» parameter/@name is the key to map a named property. The allowed parameter set and their usage are
determined by their parent element.

« Attribute units and condition are reserved.

Warning

The type checking is handled by C++ static_cast< T> and does not report nor abort the execution upon failure.

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

10 QMCPACK I/0

3.2.2 include

include is used to include an external file include/@href.

include = attribute : href

An example below includes three external files. Typically, conversion tools generate ptcl.xml and wfs.xml. The actual
names may differ.

<simulation>
<include href="ptcl.xml"> <!-- define ions and electrons -->
<include href="wfs.xml"> <!-- trial wavefunction —-->
<include href="ham.xml"> <!-- hamiltonian -->
<!-=- now QMC —->
</simulation>

The included file has to be valid XML with gmcsystem as its root element. The order of include is strict and only one
level of include is allowed, i.e., the external files cannot have any include element.

3.2.3 attrib

This is a genric way to define an attribute of a particle set, such as positions.

attrib =
children : text for the value
attribute : name, datatype, size

Remarks

« attrib/@size determines the size of the array

« the allowed attrib/@datatype

intArray : integers

realArray : reals

posArray : D-dim vectors

stringArray : strings

3.3 simulation: Root element

simulation is the root element of the main input file and contains everything about a QMC run.

simulation =
children : project,
(agmcsystem, particleset, wavefunction, hamiltonian, include) *,
init?,
loop?,
gmc+

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

3.4 Defining physical entities

simulation

project -

?gmcsystem project

?particleset
?wavefunction [

7hamiltonian id_
?include series
?init
+gmc
“ = F 1
gmcsystem
?particleset include init loop
?wavefunction +qmc
2 S
Phamittanian href source max
name
LE 1
N -1 (* A L =
. wavefunction hamiltonian ame
particleset 7parameter
name name target
name target target method=(vmc,dmc,cslinear,test)
9 9 move=(pbyp,walker)

Figure 3.3: simulation root element

3.4 Defining physical entities

3.41 qmcsystem
A gmcsystem defines a system for a QMC simulation and contains

gmcsystem =
children : (supercell,particleset,wavefunction,hamiltonian) %

gmesystem

?simulationcell
?particleset
?wavefunction
?hamiltonian

| 7N

N N ; N wavefunction hamiltonian
simulationcell particleset
name name name
target target

Figure 3.4: gmcsystem element

Generated on Mon Jul 23 2012 05:55:10 for QUCPACK by Doxygen

12 QMCPACK I/0

Remarks

» gmcsystem in the main input xml is not necessary but makes the input file more readable by grouping a
number of elements to define a physical problem.

« It defines a local scope. For example, supercell applies to all the particleset in a gmcsystem.

gmcsystem is also the root of an external XML included by the main XML file by include/@href as shown in this wave-
function xml file.

<?xml version="1.0"?>

<gmcsystem>
<wavefunction name="psi0O" target="e">
<determinantset type="bspline" href="../lda.pwscf.h5" sort="1" tilematrix="

30003000 1"
twistnum="0" source="ion0" version="0.10" gpu="yes">
<slaterdeterminant>
<determinant id="updet" size="72">
<occupation mode="ground" spindataset="0">
</occupation>
</determinant>
<determinant id="downdet" size="72">
<occupation mode="ground" spindataset="0">
</occupation>
</determinant>
</slaterdeterminant>
</determinantset>
<jastrow name="J2" type="Two-Body" function="Bspline" print="yes">
<correlation speciesA="u" speciesB="u" size="8">
<coefficients id="uu" type="Array"> 0.4733624685 0.3211249039 0.2092322
955 0.1309323998 0.07945263393 0.04610358353 0.02334017812 0.009377732289</
coefficients>
</correlation>
<correlation speciesA="u" speciesB="d" size="8">
<coefficients id="ud" type="Array"> 0.6689003572 0.403606454 0.24007859
85 0.1422242647 0.08386189425 0.04809711252 0.02406774346 0.01030826968</
coefficients>
</correlation>
</jastrow>
<jastrow name="Jl" type="One-Body" function="Bspline" source="ionO" print="
yes">
<correlation elementType="C" size="8">
<coefficients id="eC" type="Array"> -0.8180912636 -0.6861867666 —0.5252
400797 -0.3433298209 -0.2120687475 -0.119929026 -0.0528524441 -0.01515197638</
coefficients>
</correlation>
</Jjastrow>
</wavefunction>
</gmcsystem>

3.4.2 simulationcell
A simulationcell defines the supercell of a QMC simulation and contains

simulationcell = children : parameter+

As the name implies, simulationcell is only needed for the systems with periodic boundary conditions. Valid parameter
elements of simulation are

name datatype default definition

lattice tensor (DxD) a(i,j) = 6;10™ simulation cell, a(i, j)
denotes i-th vector and
the j-th component using
C ordering

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

3.4 Defining physical entities 13

scale real 1.0 scaling factor to lattice;
multiplied to /attice
bconds vector (D) pPppP Required For each lattice

vector. p for Periodic and
n for non-periodic
LR_dim_cutoff real 10 Used for the optimized
breakup method for
long-range potentials and
Jastrow functions

rs real 1 HEG density used to set
the supercell for a
homegenous electron gas.

The example below sets the supercell for the particleset/@name="ion0’ and particleset/@name="e’. The details of the
electronic and ionic systems are omitted.

<gmcsystem>
<simulationcell name="global">
<parameter name="lattice" units="bohr">
20.521733294552881 0.000000000000000 0.000000000000000
0.000000000000000 20.521733294552881 0.000000000000000
0.000000000000000 0.000000000000000 20.521733294552881
</parameter>
<parameter name="bconds">p p p</parameter>
<parameter name="LR_dim_cutoff">15</parameter>
</simulationcell>
<particleset name="ion0O"/>
<particleset name="e"/>
</gmcsystem>

Remarks

» When simulationcell is not provided, open boundary conditions are assumed. This is the default mode for the
molecular systems. The wavefunction conversion tools for Quantum Chemistry codes using Gaussian-type
orbitals do not insert simulationcell element.

» Specialized methods to evaluate the distance relationship between particlesets are selected based on the
lattice type and boundary conditions.

» Only the images in the periodic directions are included in evaluating long-range interactions.

« Particle moves outside of the supercell in the open direction(s) are rejected with bspline SPOs. For instance,
the z coordinate of an electron is restricted to [0,L_z) in a slab geomtry.

(a) (b) (c)

L 7

Ly

L.

Figure 3.5: Valid supercell for (a) slab (ppn), (b) wire (pnn) and (c) molecule (nnn) geometry in 3D.

Generated on Mon Jul 23 2012 05:55:10 for QUCPACK by Doxygen

14

QMCPACK I/0

Warning

For the electronic structure calculations in the PW basis, the gemoetric center of the ionic coordinates in the open-
boundary directions has to be close to the center, i.e., ions must be located in the shaded region of the valid
supercells. It is because the values of the SPOs are not defined beyond the supercell. Since QMC uses the values
and the gradients of the SPOs which are normally represented by bsplines on a grid, it is important to apply strict
convergence conditions on the vacuum region for the PW calculations to minimize the contributions from image
cells. Not only the total energy should be converged with respect to the supercell, all the SPOs should decay to
zero at the open boundaries.

3.43 particleset

A particleset defines a set of particles and contains

particleset=
children
attribute :

Attributes of particleset:

: group+, attribx
name, size, random, random_source

particleset
+group group
+attrib +parameter
K>—— +attrib
name
?size name
?random=(nolyes) ?size
?random_source
attrib
text parameter
+text
name
datatype name
7size

Figure 3.6: particleset element

name

datatype

default definition

name

string

None Name of this particle set.
Referenced by other
elements

size

integer

0 Number of particles, when
size is missing,
group/@size is used.

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

3.4 Defining physical entities 15

random yes/no no Randomize the initial
position (uniform)
random_source string None Randomize the initial
position using the named
particleset
Remarks

* It is seldom necessary for the users to prepare particleset from scratch. The conversion tools from other
packages will generate particleset elements.

» The HDF5 wavefunction file in ES-HDF format contains everything. It is possible to omit particleset. See the
section on ES-HDF.

* If particleset/@random="yes", the positions are randomly assigned with repsect to the supercell. This is
recommended for bulk calculations.

* When particleset/@random_source is provided, the positions are randomly assigned around the particle po-
sitions of this particleset. Information such as the valence charge for each ion is used to make reasonable
guess. This is useful with systems with open boundary conditions, e.g., molecules, surfaces.

.

particleset/@name="e’is reserved for the electronic system.

The example below defines one particleset for an ionic system called particleset/@name="ion0’ and another for an
electronic system particleset/@name=’e’. The electronic positions are randomly assigned using the positions of the
ionic system with particleset/@random_source="ion0’. The order of the two particleset elements is important, since the
electronic system depends on the ionic system.

<gmcsystem>
<particleset name="ion0" size="3">
<group name="O">
<parameter name="charge">6</parameter>
<parameter name="valence">4</parameter>
<parameter name="atomicnumber">8</parameter>
</group>
<group name="H">
<parameter name="charge">1</parameter>
<parameter name="valence">1</parameter>
<parameter name="atomicnumber">1</parameter>
</group>
<attrib name="position" datatype="posArray">
0.0000000000e+00 0.0000000000e+00 0.0000000000e+00
.0000000000e+00 -1.4304287043e+00 1.1071569627e+00
0.0000000000e+00 1.4304287043e+00 1.1071569627e+00
</attrib>
<attrib name="ionid" datatype="stringArray">
O H H
</attrib>
</particleset>
<particleset name="e" random="yes" random_source="ion0">
<group name="u" size="4">
<parameter name="charge">-1</parameter>
</group>
<group name="d" size="4">
<parameter name="charge">-1</parameter>
</group>
</particleset>
</gmcsystem>

o

3.43.1 group

Defines a group of particles or species.

group =
children : parameter+, attrib=
attribute : name, size

The properties of each group are defined by parameter. These parameters are predefined in QMCPACK and their uses
are restricted. If an input file contains parameter unknown to QMCPACK, it is ignored.

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

16 QMCPACK I/0
name datatype default definition
charge real 0 Charge in atomic unit.
g=-1 for the electrons
valence real 0 Valence charge in AU
atomicnumber integer 0 Atomic number in the
periodic table

Remarks

 Default group/@size="0".
» When group/@size is provided, the attrib elements within this group have the same size.

The example above shows two different ways to define particleset. The species of the ionic system are not grouped,
while electronic system is grouped into u(p) and d(own) electrons. Below is identical to the previous example with the
difference being that now the ionic system is grouped into O(xygen) and H(ydrogen) and the size is the sum of two

groups.

<gmcsystem>
<particleset name="ionO">
<group name="O" size="1">
<parameter name="charge">6</parameter>
<parameter name="valence">4</parameter>
<parameter name="atomicnumber">8</parameter>
<attrib name="position" datatype="posArray">
0.0000000000e+00 0.0000000000e+00 0.0000000000e+00
</attrib>
</group>
<group name="H" size="2">
<parameter name="charge">1</parameter>
<parameter name="valence">1</parameter>
<parameter name="atomicnumber">1</parameter>
<attrib name="position" datatype="posArray">
0.0000000000e+00 -1.4304287043e+00 1.1071569627e+00
0.0000000000e+00 1.4304287043e+00 1.1071569627e+00
</attrib>
</group>
</particleset>
<particleset name="e" random="yes" random_source="ion0">
<group name="u" size="4">
<parameter name="charge">-1</parameter>
</group>
<group name="d" size="4">
<parameter name="charge">-1</parameter>
</group>
</particleset>
</gmcsystem>

3.4.4 hamiltonian

It defines a many-body Hamiltonian A = Zlfz for the target particleset to evaluate the local energy,

HY¥r(R
£ (R) = TXT(R)
¥r(R)
R denotes the configuration of the target particleset. It contains
hamiltonian =
children : pairpotx, estimatorx

attribute : name, target

Remarks

The children of hamiltonian are divided into
» Physical operator, fz, whose value is added to the local energy.

» Estimators for an operator O = O‘PT/‘I‘T The kinetic operator is automatically added to the total H. ltis

possible to overwrite the kinetic operator with a specialized kinetic operator.

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

3.4 Defining physical entities 17

3.4.4.1 pairpot

A pair potential in QMCPACK denotes any operator which has the form of
h=Y Y V(R,R))
i

where the i and j run over the particles in the t(arget) particleset and s(ource) particleset. The s(ource) particleset can
be the same as the t(arget) particleset, e.g., Hartree energy for the electrons. pairpotential node contains

pairpot = attribute : name, type, source, target, wavefunction

The attributes are

name definition default choices

type Pontential type None coulomb, pseudo

source source particleset e any particleset/@name
target target particleset e any particleset/@name
wavefunction target ¥r psi0 any wavefunction/@name

For a pseudopotential calculation, the many-body Hamiltonian,

e

Z V2+Z |R Rl‘ Z |R1 R1| J’_szpveudo RuRI)

i i<j i<j

is given by

<hamiltonian name="h0" type="generic" target="e">
<pairpot name="ElecElec" type="coulomb" source="e" target="e" physical="true"
/>
<pairpot name="IonIon" type="coulomb" source="ion0" target="ion0O"/>
<pairpot type="pseudo" name="PseudoPot" source="ion0" wavefunction="psiO"
format="xml">
<pseudo elementType="C" href="C.xml"/>
</pairpot>
</hamiltonian>

3.4.5 wavefunction

A trial many-body wavefunction takes a form Wr = [T, wi({o},R) and for the electronic structure calculations, it is
generally written as

S

Y =exp(—Ji)exp(—Jz)--- ZCiDlT(¢)D,-¢(¢)7

i=1
so called multi-Slater-Jastrow wavefunction.

wavefunction node contains

wavefunction =
children : jastrowx, determinantsetx
attribute : name, target

This example shows a Slater-Jastrow wavefunction with One-Body and Two-Body Jastrow functions:
Wr = exp(—/1) exp(—2) D] (9)D (9),
N————
determinantset

where {¢ } denotes the single-particle orbitals.

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

18 QMCPACK I/0

<?xml version="1.0"?>
<gmcsystem>
<wavefunction name="psiO" target="e">
<determinantset type="bspline" href="lda.pwscf.h5" sort="1" tilematrix="1 0
0o010001"
twistnum="0" source="ion0" version="0.10" gpu="yes">
<slaterdeterminant>
<determinant id="updet" size="8">
<occupation mode="ground" spindataset="0">
</occupation>
</determinant>
<determinant id="downdet" size="8">
<occupation mode="ground" spindataset="0">
</occupation>
</determinant>
</slaterdeterminant>
</determinantset>
<jastrow name="J2" type="Two-Body" function="Bspline" print="yes">
<correlation speciesA="u" speciesB="u" size="8">
<coefficients id="uu" type="Array"> 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</
coefficients>
</correlation>
<correlation speciesA="u" speciesB="d" size="8">
<coefficients id="ud" type="Array"> 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</
coefficients>
</correlation>
</jastrow>
<jastrow name="Jl" type="One-Body" function="Bspline" source="ion0" print="
yes">
<correlation elementType="C" size="8">
<coefficients id="eC" type="Array"> 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</
coefficients>
</correlation>
</jastrow>
</wavefunction>
</gmcsystem>

Generated on Mon Jul 23 2012 05:55:10 for QUCPACK by Doxygen

Chapter 4

Interface Utilities

As discussed before, fermionic wavefunctions are

M
Wus =Y D! (9)D}(9),
i=1

where {¢} denotes a set of single-particle orbitals (SPOs).

SPOs are obtained by other electronic structure codes, such as Quantum Espresso or GAMESS and they have to be
put into the file formats for QMCPACK.

The most commonly used codes by the developers are PWSCF (pw.x of QE) and GAMESS and tools to support them
are more developed than others. In this section, we describe how to use the available tools to prepare QMC runs.

A typical QMC workflow follows

* Run a DFT or QC calculation
» Convert output for QUCPACK

* Run QMC

The files generated by various converter tools are XML and HDFS5 files. They are portable on any platform.

4.1 Quantum espresso

Download a distribution with PP/pw2gmcpack.f90 via subversion
svn co http://gmctools.googlecode.com/svn/dft/espresso-4.2/
It contains two additional files to the QE distribution

* PP/pw2gmcpack.fo0

« clib/esh5_interfaces.c
Additionally, PP/Makefile is modified to compile pw2gmcpack.f90 with HDF5 library. To build pw.x and pw2gmcpack,

« configure as instructed by QE documentations

20 Interface Utilities

— will generate make.sys for the target machine

+ edit make.sys: modify DFLAGS, CFLAGS and and add HDF5_HOME and HDF5_LIBS

HDF5_HOME = location of HDF5 library

DFLAGS = [existing options] —-DH5_USE_16_APT

CFLAGS = [existing options] -std=c99 -I$(HDF5_HOME)/include
HDF5_LIBS = -L$ (HDF5_HOME) /l1ib -1hdf5_hl -1hdf5

* make pw.x and pw2gmcpack.x

make pw; make pp

4.1.1 Generating wavefunction files from PWSCF
After fully converged PWSCF runs, execute pw2gmcpack.x as

pw2gmcpack.x < convert.in

to generate ESHDF file and XML file that is ready for use in QVICPACK.

convert.in needs only these options

&inputPP
prefix= 'PREFIX’
outdir='OUTDIR',
write_psir=.false.

PREFIX and OUTDIR are the same as those used in the input file for pw.x. With write_psir=.false. (default), only the
orbitals in the PW basis are written to reduce the file size and time to write the file. Make sure to compile QMCPACK
with FFTW.

4.1.2 Using the converted files in QUCPACK

pw2qgmcpack.xml generates

« x.ptcl.xml : describe ionic and electronic system
+ x.wfs.xml : wavefunction

+ x.pwscf.h5 : HDF5 file for the wavefunctions from planwave codes
.wfs.xml can be included in a main QMC input as
<include href="H20.wfs.xml"/>
H20.wfs.xml has the basic definition of a trial wavefunction which consists of

* slater determinant
» two-body Jastrow

 one-body Jastrow

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

4.2 Gamess

21

<gmcsystem>
<wavefunction name="psiO" target="e">
<determinantset type="bspline" href="H20.pwscf.h5" sort="1" tilematrix="1 0
001000 1"
twistnum="0" source="ion0" version="0.10" gpu="yes">
<slaterdeterminant>
<determinant id="updet" size="32">
<occupation mode="ground" spindataset="0">
</occupation>
</determinant>
<determinant id="downdet" size="32">
<occupation mode="ground" spindataset="0">
</occupation>
</determinant>
</slaterdeterminant>
</determinantset>
<jastrow name="J2" type="Two-Body" function="Bspline" print="yes">
<correlation speciesA="u" speciesB="u" size="8">
<coefficients id="uu" type="Array"> 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</
coefficients>
</correlation>
<correlation speciesA="u" speciesB="d" size="8">
<coefficients id="ud" type="Array"> 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</
coefficients>
</correlation>
</jastrow>
<jastrow name="J1l" type="One-Body" function="Bspline" source="ionO" print="
yes">
<correlation elementType="0O" size="8">
<coefficients id="eO" type="Array"> 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</
coefficients>
</correlation>
<correlation elementType="H" size="8">
<coefficients id="eH" type="Array"> 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</
coefficients>
</correlation>
</jastrow>
</wavefunction>
</gmcsystem>

For solid systems with periodic boundary conditions, there is no need to include *.ptcl.xml. All the data needed for QMC
calculations - unitcell, ionic and electronic systems - are in x.pwscf.h5 and the attributes of determinantset are used to

construct ionic and electronic particlesets.

41.3 Molecular calculations using PW codes

It is important to have sufficiently large vaccum regions in all directions to ensure that the SPOs go to zero at the cell

boundary. In addition, the boudary conditions can be overwritten as

<simulationcell>
<parameter name="bconds"> n n n </parameter>
</simulationcell>

This will remove any contribution from image cells to total energies.

The main input xml has to be modified.

<include href="H20.ptcl.xml"/>
<include href="H20.wfs.xml"/>

4.2 Gamess

4.3 wfconvert package

To support multiple formats of pseudopotentials and SPOs, K. Esler has developed a set of tools. They are distributed

as a separate package and can be downloaded via subversion as

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

22 Interface Utilities

svn co http://gmctools.googlecode.com/svn/trunk/wfconvert

The distribution includes blitz header files and Common library. It uses the same build system based on cmake as
QMCPACK and needs these libraries

* libxmi2
* hdf5

. fitw3

* gsl

gsl (Gnu Scientific Library) is available as a LINUX package or as a module on HPC systems.

When the build is successful, two executables will be in bin directory.

« wfconvert

* ppconvert

ppconvertis a useful tool that can generate PPs files for other ES codes as well as for QMCPACK.

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

Chapter 5

QMC School 2012

5.1 Basics on Forge at NCSA

NCSA Dell NVIDIA Linux Cluster Forge Technical Summary

First time:

» Log on forge.ncsa.illinois.edu

+ Set up common environment (only once)

ssh -Y your-id@forge.ncsa.illinois.edu
cp /uf/ac/jnkim/gmc/tcshrc_common ~/.tcshrc
cp /uf/ac/jnkim/gmc/modules ~/.modules

 Set up your directory to run exercise

mkdir yourname
cd yourname

Note that the default shell on forge is fcsh and it is not possible to change the login shell for the training account.
However, you can start bash. In this case, copy /uf/ac/jnkim/qmc/bashrc_common as

cp /uf/ac/jnkim/gmc/bashrc_common ~/.bashrc

For Monday’s lab, copy /uf/ac/mcminis2/gmcpack_tutorial.tar in your working directory,

cp /uf/ac/mcminis2/gmcpack_tutorial.tar .
tar xvf gmcpack_tutorial.tar

5.2 Setups for QUCPACK

Pre-built binaries can be found in /uf/ac/jnkim/qmc/bin and they are

qmcapp_real CPU, real wavefunctions in double precision
qmcapp_complex CPU, complex wavefunctions in double precision

gqmcapp_cuda GPU, real wavefunctions in single precision

http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/DellNVIDIACluster/TechSummary/

24 QMC School 2012

Some features of QMICPACK are fixed at the compiler time.

+ data type of trial wavefunctions: real or complex
+ CPU or GPU

— With GPU, most of the calculations use single precision

To build QMCPACK yourself on forge, follow these steps

$svn co http://gmcpack.googlecode.com/svn/trunk/ gmcpack

$Scd gmcpack/build

$cmake -DCMAKE_TOOLCHAIN_FILE=../config/ForgeMvapich.cmake ..
$cmake -DCMAKE_TOOLCHAIN_FILE=../config/ForgeMvapich.cmake ..
Smake -j4

$1ls bin

If all goes well, you will see bin/gmcapp in your directory. The defult build will create a binary using real wavefunctions
on CPUs. Note that ForgeMvapich.cmake defines build properties that are only applicable to forge.

To build other versions with the prepared toolchain file on forge, create directories for each build.

* gmcpack

— src
build
build_complex
build_cuda

Starting from the top directory,

» complex wavefunction

Smkdir build_complex

$cd build_complex

Scmake —-DCMAKE_TOOLCHAIN_FILE=../config/ForgeMvapich.cmake -DQMC_COMPLEX=1 ..
$cmake -DCMAKE_TOOLCHAIN_FILE=../config/ForgeMvapich.cmake -DQOMC_COMPLEX=1 ..
Smake -3j4

« CUDA version

Smkdir build_cuda

Scd build_cuda

Scmake —-DCMAKE_TOOLCHAIN_FILE=../config/ForgeMvapich.cmake -DQMC_CUDA=1 ..
Scmake —-DCMAKE_TOOLCHAIN_FILE=../config/ForgeMvapich.cmake -DQMC_CUDA=1 ..
Smake -j4

These are tools used to interface QE and QMCPACK:

$svn co http://gmctools.googlecode.com/svn/dft/espresso-4.2
$svn co http://gmctools.googlecode.com/svn/trunk/wfconvert

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

Chapter 6

Using PWSCF and QMCPACK to perform total energy
calculations of condensed systems

6.1 Introduction

This tutorial session will focus on how to perform accurate QMC calculations on solids using pwscf for creating trial
wavefunctions and QMCPACK for the QMC. The concepts and tools needed will be introduced in the context of calcu-
lating a pressure versus volume curve for carbon in the diamond structure. Due to the limited computational resources
available for this tutorial, many of these calculations will be under converged, but complete results will be provided in the
course of this document.

Please note that this tutorial will be highly dependent on the setup-gmc.pl tool for generating pwscf and QMCPACK
input files. This tool has been preconfigured and placed in your path. In general you will need edit the configuration file
setup-gmc-conf.pm located in the utils directory of QMCPACK to specify the locations of several tools used throughout.

The general outline of the tutorial is follows. The necessary input DFT calculations for a QMC simulation will be dis-
cussed. Then a wavefunction will be generated from a DFT calculation for diamond. Next, VMC will be used to optimize
Jastrow factors for the many body wavefunction. Then the proper convergence of the b-spline representation of the DFT
wavefunction will be examined. With that in hand, DMC calculations will be discussed including the convergence of the
time step. Finally, the finite size errors inherent in these calculations will be confronted.

6.2 Initial DFT Calculations

The first step in performing quantum Monte Carlo calculations is to perform a DFT calculation on the same system. This
is necessary to provide the trial wavefunction that is necessary both for improving the efficiency of the QMC calculation
(importance sampling) and for mitigating the sign problem. In this case we will be focusing on diamond, so we will start
with a pwscf input file as given below:

&control
calculation=’scf’
restart_mode=’ from_scratch’,
tstress = .true.
prefix=’'diamond’,
pseudo_dir = './’,
outdir=’out’
disk_io="low’
wf_collect=.true.

/

&system
ibrav=2, celldm(l) = 6.700, nat= 2, ntyp= 1,
nspin=1,

26 Using PWSCF and QMCPACK to perform total energy calculations of condensed systems

degauss=0.001,
smearing='mp’,
occupations=’smearing’,
ecutwfc =210
ecutrho =840

/

&electrons
conv_thr = 1.0d-10
mixing_beta = 0.7

/
ATOMIC_SPECIES
C 12.0107 C.ncpp
ATOMIC_POSITIONS {crystal}
C 0.00 0.00 0.00
C 0.25 0.25 0.25
K_POINTS AUTOMATIC
888111

As the goal of the calculation is to produce an extremely accurate DFT wavefunction, ecutwfc and the k-points should
be converged to a very high degree. For this purpose, it is often better to monitor convergence of the stresses (which
depend linearly on the wavefunctions) than on the total energy which improves quadratically with the quality of the
wavefunctions.

In each of your home directories, there should be a directory called diamond. This input file is included in the diamond
directory and is called diamond-scf.in. Create a directory for the output file (mkdir out) and then run pwscf with the
following command:

pw.x < diamond-scf.in > diamond-scf.out

6.2.1 Pseudopotentials

In the calculation on diamond, note that the cutoff is higher than is typical in modern electronic structure codes. This
is due to two factors. The first is that the treatment of nonlocal pseudopotentials in QMC presently requires the use
of norm conserving pseudopotentials rather than the PAW or ultrasoft formalisms which are now in use. The second
reason for the high cutoff is due to the particular construction of this pseudopotential. It was created using op i um with
the only constraint in mind that it accurately reproduces the all electron results within LDA. This is often a practical way
to generate pseudopotentials for QMC as the increased plane wave cutoffs do not result in increased run time within
QMC and the DFT calculation is many orders of magnitude faster than the QMC. The only exception to this rule is when
there is difficulty fitting the wavefunction into the memory of the computer during the QMC. This will be discussed more
thoroughly in section Creating and testing wavefunctions for QMICPACK.

It may also be practical to use pseudopotentials available in various libraries distributed with DFT codes. The ppconvert
tool which is a part of the gmcutils distribution can convert many of these to the xml format which QUCPACK under-
stands. For the purpose of this tutorial, any norm conserving pseudopotential in UPF or NCPP format may be used for
the DFT part of the QMC calculations.

6.3 Creating and testing wavefunctions for QUCPACK

The plane wave representation for the wavefunction used in pwscf is not a good choice for quantum Monte Carlo. This
is because the largest computational effort involved in QMC is evaluating the trial wavefunction and related quantities
when an electron is moved from r to r’. With a plane wave basis, this requires evaluating all N of the basis functions for
every move.

Rather than using these plane waves, QMCPACK calculations are typically performed using a b-spline representation of
the wavefunction. Practically speaking, this involves extracting the plane waves from a pwscf calculation and then choos-
ing a regular grid upon which to construct the spline representation. In this section you will construct the wavefunction
from pwscf calculations and test that the splines are sufficiently dense within QMCPACK.

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

http://opium.sourceforge.net

6.4 Optimizing Jastrow Factors within QMC 27

6.3.1 Extracting Wavefunctions at Particular k-points

There is a direct mapping from k-points in DFT calculations to non-periodic boundary conditions in quantum Monte
Carlo (essential for twist averaging). For this reason and for others detailed in section Creating and Using Supercells, it
is important to be able to extract the wavefunction at arbitrary k-points in the first Brillouin Zone of the system. setup-
gmec.pl simplifies this process by creating input files for pwscf to get the wavefunction at any k-point using the charge
density from the converged DFT calculation found in section Initial DFT Calculations. Following this pwscf calculation,
the tool pw2gmcpack.x should be run to generate an hdf file which is then prepared for QMCPACK using wfconvert.
Generate these files in the directory where pwscf has already been run by issuing the command

setup-gmc.pl --genwfn --kpoint 0 0 0 diamond-scf.in

This will generate an input file for pwscf called be-nscf.in. This input file should be identical to be-scf.in except for a few
critical points. Instead of a scf calculation, the calculation will now be nscf so as to avoid changing the charge density
from the previously converged calculation. Secondly, the wavefunction will be collected by a single process using wf_-
collect = .true. This should allow the mpi version of quantum espresso to be used where available. All symmetry is also
turned off in order to avoid removing any k-points. Finally, the last section of the file: K_POINTS is changed to include
only the point “0 0 0”.

Run this calculation with the following command:

pw.x < diamond-nscf.in > diamond-nscf.out

The wavefunction can now be extracted to hdf format using the pw2gmcpack.x tool that is included with the modified
version of quantum espresso available from: (gmc-tools). All that is needed for this is a simple input file that tells
pw2gmcpack.x where the wavefunctions from the pwscf calculation are and whether or not to generate the b-splines
directly. Invoke pw2gmcpack.x as follows:

pw2gmcpack.x < diamond-pw2x.in > diamond-pw2x.out

Now this is converted to the eshdf format used by QMCPACK with the following command

wfconvert --nospline --eshdf diamond.h5 out/diamond.pwscf.h5 >& diamond-
wfconvert.out

The nospline argument keeps the wavefunction in reciprocal space, which will be useful in convergence testing below,
but can significantly increase the setup time in QMCPACK for large systems. wfconvert can also be invoked with the
argument —factor xx which will generate the real space b-splines directory with a given mesh spacing.

6.4 Optimizing Jastrow Factors within QMC

The next step in performing QMC calculations of diamond is to produce as accurate a many body wavefunction as
possible. Although many forms have been proposed for many body wavefunctions of periodic systems, we will stick to
the standard Slater-Jastrow form whereby the Slater determinant obtained from DFT is multiplied by correlation factors
which explicitly account for the approach of electrons to other electrons and of electrons to the ions in the system. A
very general form of these Jastrow factors which is used in QMCPACK is as follows

expfl(R) _ exp*):i):jf(‘Ri*RjD

where the function f(x) is represented as a one dimensional functor.

It is not possible to optimize this function analytically, so we will optimize its form using variational Monte Carlo. There
are several different formalisms for doing this optimization. Probably the simplest to understand conceptually is the

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

28 Using PWSCF and QMCPACK to perform total energy calculations of condensed systems

variance minimization approach. This technique takes advantage of the zero variance principle whereby the variance
of a VMC simulation with any many body eigenstate as the wavefunction will be zero. Knowing this, VMC simulations
are performed and the parameters which influence the Jastrow factors (in this case spline values) are varied in order to
reduce the variance of the simulation.

Recently, successful techniques have been devised which also take into account the variational nature of VMC and work
to minimize the total energy calculated by varying the parameters in the wavefunction. We will use one such approach
to optimize Jastrow factors for our aluminum example. Again, we will use setup-gmc.pl to generate a QMCPACK input
file. Invoke that script with the following command:

setup-gmc.pl --optwvfcn --splfactor 1.0 —--wvfcnfile diamond.h5 \
——-vmctimestep 0.8 --vmcblocks 512 —--vmcwalkers 128 --vmcsteps 5 \
——optsamples 32768 —--optloops 16 --onebodysplinepts 4 \
—-—-twobodysplinepts 4 diamond-scf.in

To run these calculations, it is necessary to have some understanding of how parallelism works in QMCPACK. QMCPA-
CK takes advantage of distributed memory parallelism (such as between nodes of a supercomputer) via MPI and shared
memory parallelism (such as within a node) using OpenMP. On modern supercomputers, this can result in large benefits
because the communication is reduced linearly with the number of OpenMP threads used per node. In this case we will
have logged directly into the nodes of the supercomputer and will run QMICPACK using only OpenMP parallelism. To
do this, set the number of threads to 4 using the following command

export OMP_NUM_THREADS=4

Now QMCPACK should be invoked to find the optimal Jastrow factor. First move to the directory optimization and invoke
QMCPACK as follows

gmcapp opt-diamond.xml >& opt-diamond.out &

Hybrid parallelism can also be used by invoking gmcapp via the standard mpi process on your supercomputer taking
into account that the number of processes requested should not be the total number of CPU cores to use, but should
likely correspond to either the number of processors on the nodes or to the number of nodes. As an example, to run
QMCPACK on a computer with 4 nodes which each have 8 processors, commands similar to the following would be
used:

export OMP_NUM_THREADS=8
mpirun -np 4 gmcapp opt-diamond.xml >& opt-diamond.out &

While QMCPACK is optimizing the wavefunction, take some time to examine the input file that was generated by setup-
gme.pl:

<?xml version="1.0"?>
<simulation>
<project id="opt-diamond" series="1">
<application name="gmcapp" role="molecu" class="serial" version="0.2">
Optimization of Jjastrows diamond
</application>
</project>
<gmcsystem>
<!-- define simulation cell -->
<simulationcell>
<parameter name="lattice">
-3.35 0.00 3.35
0.00 3.35 3.35
-3.35 3.35 0.00
</parameter>
<parameter name="bconds">p p p</parameter>
<parameter name="LR_dim_cutoff">15</parameter>
</simulationcell>
<!-- define ionic system —-->
<particleset name="ionO" size="2">
<group name="C">

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

6.4 Optimizing Jastrow Factors within QMC

<parameter name="charge">4.000000</parameter>
<parameter name="valence">4.000000</parameter>
<parameter name="atomicnumber">6.000000</parameter>
</group>
<attrib name="position" datatype="posArray" condition="1">
0.00 0.00 0.00
0.25 0.25 0.25
</attrib>
<attrib name="ionid" datatype="stringArray">
c C
</attrib>
</particleset>
<!-- define electronic system —-->
<particleset name="e" random="yes" randomsrc="ion0">
<group name="u" size="4">
<parameter name="charge">-1</parameter>
</group>
<group name="d" size="4">
<parameter name="charge">-1</parameter>

</group>
</particleset>
<!-- define wavefunction for "e" -->
<wavefunction name="psi0" target="e">
<determinantset type="einspline" href="../diamond.h5"
tilematrix="1 0 0 0 1 0 0 0 1" twistnum="0" gpu="yes" meshfactor="1.0">
<basisset/>

<slaterdeterminant>
<determinant id="updet" size="4" ref="updet">
<occupation mode="ground" spindataset="0">
</occupation>
</determinant>
<determinant id="downdet" size="4" ref="downdet">
<occupation mode="ground" spindataset="0">
</occupation>
</determinant>
</slaterdeterminant>
</determinantset>
<jastrow name="J2" type="Two-Body" function="Bspline" print="yes">
<correlation speciesA="u" speciesB="u" size="4">
<coefficients id="uu" type="Array"> 0 0 0 0 </coefficients>
</correlation>
<correlation speciesA="u" speciesB="d" size="4">
<coefficients id="ud" type="Array"> 0 0 0 0 </coefficients>
</correlation>
</jastrow>
<jastrow name="Jl" type="One-Body" function="Bspline" print="yes" source=
"ion0">
<correlation elementType="C" cusp="0.0" size="4">
<coefficients id="C" type="Array"> 0 0 0 0 </coefficients>
</correlation>
</jastrow>
</wavefunction>
<!-- define hmailtonian for "e" -->
<hamiltonian name="hO" type="generic" target="e">
<pairpot type="pseudo" name="PseudoPot" source="ion0" wavefunction="psiO"
format="xml">
<pseudo elementType="C" href="../C.xml"/>
</pairpot>
<pairpot name="IonIon" type="coulomb" source="ion0" target="ion0"/>
<pairpot name="MPC" type="MPC" source="e" target="e" ecut="60.0" physical
="false"/>
<pairpot name="ElecElec" type="coulomb" source="e" target="e" physical="
true"/>
<estimator name="KEcorr" type="chiesa" source="e" psi="psiO"/>
</hamiltonian>
</gmcsystem>
<loop max="16">
<gmc method="linear" move="pbyp" checkpoint="-1" gpu="yes">
<parameter name="blocks"> 512 </parameter>
<parameter name="warmupsteps"> 0 </parameter>
<parameter name="steps"> 5 </parameter>
<parameter name="timestep"> 0.8 </parameter>
<parameter name="walkers"> 128 </parameter>
<parameter name="samples"> 32768 </parameter>
<parameter name="minwalkers"> 0.5 </parameter>
<parameter name="maxWeight"> le9 </parameter>
<parameter name="useDrift"> yes </parameter>
<estimator name="LocalEnergy" hdf5="no"/>

<cost name="energy"> 0.05 </cost>
<cost name="unreweightedvariance"> 0.0 </cost>
<cost name="reweightedvariance"> 0.95 </cost>

Generated on Mon Jul 23 2012 05:55:10 for QUCPACK by Doxygen

30 Using PWSCF and QMCPACK to perform total energy calculations of condensed systems

<parameter name="MinMethod">quartic</parameter>
<parameter name="GEVMethod">mixed</parameter>
<parameter name="beta"> 0.05 </parameter>
<parameter name="expO"> -16 </parameter>
<parameter name="nonlocalpp">no</parameter>
<parameter name="useBuffer">no</parameter>
<parameter name="bigchange">5.0</parameter>
<parameter name="alloweddifference"> 1.0e-4 </parameter>
<parameter name="stepsize">4.0e-1</parameter>
<parameter name="stabilizerscale"> 1.0 </parameter>
<parameter name="nstabilizers"> 3 </parameter>
<parameter name="max_its"> 1 </parameter>
</qme>
</loop>
</simulation>

The geometry of the calculation is read from the pwscf input file and the unit cell is placed in the lattice tag. The bconds
tag can be changed so that slabs or wires can be handled natively without any spurious interactions from images, to
do this, simply change p (periodic) for a given boundary condition to n (non-periodic). Following this, particlesets are
specified giving information about the electrons and ions in the problem.

The determinantset controls how the wavefunction is represented in the problem. Here type="einspline” specifies that we
are using a b-spline basis set and meshfactor="1.0" specifies a mesh spacing. The meshfactor is the spacing in terms of
the density of the real space points corresponding to the plane waves used in the DFT calculation. A meshfactor of 0.5
will give the same number of real space points as plane waves in the cell. Other notable sections include the Jastrow
factor (which in this case starts as being represented by a 4 point spline that is all 0), and the optimization block at the
end of the file.

In general each QMCPACK input file will consist of some header information followed by a particleset, a wavefunction,
a Hamiltonian and then any number of gmc sections which give the actions for QUICPACK to perform. Here we use
a loop construct to repeat the optimization several times because the optimization needs to proceed somewhat self-
consistently. At this point, take a minute to familiarize yourself with the QMCPACK users guide, which will provide a
much more thorough explanation of how the input file is structured and what each element means.

This optimization will take about 10 minutes to run. However, the calculation will continuously write to files named opt-
diamond.s0??.scalar.dat, with one for each iteration of the VMC optimization. There is another script, OptProgress.pl
which can be used to monitor the progress of the optimization. The syntax to invoke it is as follows:

OptProgress.pl opt-diamond.s001l.scalar.dat

When the calculation is finished, this will produce plot similar to this figure.

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

6.4 Optimizing Jastrow Factors within QMC 31

Sequence vs Energy for VMC optimization
'1 026 T T T T T T T T T T T T T T

-10.28 H i
-10.3 | A

-10.32 1
-10.34 1
-10.36 q

energy (Ha)

-10.38 |- .
104 F E
-10.42 .

-10.44 | S T T

46 1 1 1 1 1 1 1 1 1 1 1 1 1 1
001002003004 005006007008009010011012013014015016
sequence

Figure 6.1: Total energy vs iteration number for optimization of Jastrow factors in diamond.

6.4.1 Testing Convergence of the Splines in QUCPACK

Now that the wavefunctions have been generated the proper density for the b-splines should be found. In the previous
section we used a rather large mesh given by meshfactor="1.0" in the determinantset. This is typically larger than is
necessary and as the memory needed to store the wavefunction goes as the cube of the meshfactor, this can cause
calculations to be intractable.

In order to determine the smallest appropriate meshfactor, we will perform variational Monte Carlo calculations using
the best Jastrow factor determined above. The quantities to monitor are the total energy which should decrease until
saturating at large values of meshfactor, the variance which should decrease as meshfactor increases and the kinetic
energy which depends only on the shape of the trial wavefunction including Jastrow factor.

To perform this convergence test, generate appropriate input files using setup-gmc.pl with the following command

setup-gmc.pl --splconv --wvfcnfile diamond.h5 --withjas \
--vmcblocks 2000 --vmcwalkers 512 --vmcsteps 2 —-vmctimestep 1.0 \
—--minfactor 0.4 --maxfactor 0.8 --factorinc 0.1 diamond-scf.in

This will generate input files with names like diamond-f0.40.xml in the directory bsplineConv. Run each of these calcu-
lations by changing to the directory bsplineConv and invoking gmcapp for each one of the input files in turn:

gmcapp diamond-£0.40.xml >& diamond-£0.40.out
gmcapp diamond-£f0.50.xml >& diamond-£0.50.out
gmcapp diamond-£f0.60.xml >& diamond-f0.60.out
gmcapp diamond-f0.70.xml >& diamond-f0.70.out
gmcapp diamond-£f0.80.xml >& diamond-£f0.80.out

When you have finished this (it should take several minutes) you can monitor the convergence of the results using the
PlotBsplConv.pl utility distributed with QMCPACK:

PlotBsplConv.pl diamond-f0.40.s001.scalar.dat

Which will generate a plot which looks like Fig. SplConvFig. The convergence of the total energy can be somewhat
misleading as the quadratic convergence of the energy with the wavefunction can mask differences in the wavefunction.

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

32 Using PWSCF and QMCPACK to perform total energy calculations of condensed systems

The variance of the local energy is a much more reliable metric of the spline’s convergence. It requires many fewer
samples to converge and is a direct measure of how the spline factor will influence the cost of the DMC calculations to
come. The number of steps required to obtain a particular statistical error in a DMC calculation goes linearly with the
variance. In this case we see convergence with a meshfactor of roughly 0.7, which we will use in our future calculations.

B-spline factor vs energies for VMC

’(? '104259 T T T T T
I -10.4285 .
z -10.4312 1
§ -10.4339 - 1
& -10.4366 - .
T -10.4393 | .
= 110442 . ' : : L
0.35 0.45 0.55 0.65 0.75
8 ¥ T T T T
& 1.97675 R
S 16485 -
c 1.32025 |
El .
S 0992t . L . i ; g
0.35 0.45 0.55 0.65 0.75
T 11968 l . T ' .
< 11.9586 1
S 11.9498 - -
2 119399 - .
o 11.9306 .
5 119212 .
£ 119119 . : ' : :
0.35 0.45 0.55 0.65 0.75

b-spline factor

Figure 6.2: Total, kinetic energy and variance of diamond as a function of b-spline spacing from VMC.

6.5 Performing DMC Calculations

Diffusion Monte Carlo (DMC) calculations will consume the vast majority of the CPU cycles in your QMC projects. This
method differs from VMC in that it samples the observables you specify for the lowest energy wavefunction consistent
with the many body nodes that you provide in your trial wavefunction.

In performing accurate DMC calculations, it is important to converge several technical parameters. The first of these
is the average population of walkers in the calculation. In general this needs to be large so that fluctuations in the
population do not unduly influence the results of the calculations. For relatively good trial wavefunctions like the one
used here, 1000 walkers should be more than sufficient, however for wavefunctions with larger variance, like all electron
wavefunctions of first row solids, this may need to be 10’s of thousands.

The second technical parameter that will need to be converged is the size of the time step which is used in the DM-
C propagation. This controls the accuracy of the Green’s function which is used to propagate the walkers. A rule of
thumb is that the acceptance ratio upon moving the walkers should be around 99%. However, this should be precisely
converged, a task which can again be accomplished by the combination of setup-gmc.pl and QMCPACK. Here is the
input line for setup-gmc.pl

./setup-gmc.pl --convdmctstep --wvfcnfile diamond.h5 --splfactor 0.7 \
--vmcblocks 64 --vmcwalkers 1024 --vmcwarmupsteps 20 --vmctimestep 1.0 \
—-vmcsteps 5 —--dmcwalkers 1024 —--dmcsteps 5 —-dmcblocks 1000 \
——dmcwarmupsteps 200 --mindmctstep 0.01 --maxdmctstep 0.04 \
——dmctstepinc 0.01 diamond-scf.in

The input file this produces will start with a short VMC calculation to produce a population of walkers more nearly

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

6.5 Performing DMC Calculations 33

distributed according to the trial wavefunction. After that a series of DMC calculations are done with successively
shorter time steps. The first calculation (series 002) starts with a time step of 0.04, followed by time steps of 0.03, 0.02
and 0.01. In order to analyze the results of these calculations, it is necessary to understand how DMC calculations are
analyzed. The PlotDMC.pl script can show both the trace of the local energy as well as the population at each time step.
Look at the first 1000 steps of the first DMC calculation:

PlotDMC.pl diamond-dmcTsteps.s002.dmc.dat 1 1000

This should produce a plot like the one below.

diamond-dmc.s002.dmc.dat histogram

M& h’“ W i’ |

Energy (Hartrees)

1048 F———— T . :
:10.52 | ‘
a2y WW W il W i ”\” \
-10.6 4
-10.62 L
L | =
oy Nv h Mo s At M
mr M'\ A LA. N

-10.5 A ;
-10.58

i A AR

T Vm LP f‘w}w ”\ ‘MM’L‘ w‘uw‘ J W‘”‘m\," m M

. Wi

0

TN O N e =y M |

4
MM"

QOO=NWAOION
OOOOOOOOO0O

OOOO0O0O0O0000

Population (Walkers)

100 200 300 400 500 600 700 800 9001000
DMC step

counts

Figure 6.3: First 1000 steps of DMC calculation with time step of 0.04

At the beginning of the local energy plot, there is a transient as the population of walkers equilibrates from sampling
‘P% to the mixed distribution W7y ®. After this transient, the local energy sampled should be approximately Gaussian
(note recent work by R. Hood which suggests it is not exactly Gaussian) and the population should also be Gaussian.
Any large deviations from this suggest that the sampling may not be ergodic. Now look at the full calculation with the
transient removed:

PlotDMC.pl diamond-dmcTsteps.s002.dmc.dat 200

This produces a figure like below.

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

34 Using PWSCF and QMCPACK to perform total energy calculations of condensed systems

diamond-dmc.s002.dmc.dat histogram
- 1048 F T T T T T T T
8 -10.5
% :10.52 \ -
& -10.54 é
= -10.56
o -10.6
w -10.62 | | , , ,) , , , , L
’gf 8k L, A
4 [TYTEmLy
B ANAROMIALN |

500 100015002000250030003500400045005000
DMC step

counts

Figure 6.4: DMC calculation with time step of 0.04, first 200 steps removed to avoid transient

The spikes in the population histogram notwithstanding, this calculation appears to be producing reasonably good
statistics. All of the various quantities which are reported in the scalar.dat files may now be examined using the energy.-
pl tool:

energy.pl diamond-dmcTsteps.s002.scalar.dat 50

Note that the first 50 blocks have been thrown out to avoid the transient (each block contains 5 steps so this is slightly
more than in the plots above). This produces the output below.

LocalEnergy = -10.55142 +/- 0.00090
Variance = 0.533 +/- 0.019
LocalPotential = -22.3342 +/- 0.0064
Kinetic = 11.7828 +/- 0.0066
LocalECP = -1.1639 +/- 0.0028
NonLocalECP = -5.7078 +/- 0.0081
IonIon = -12.8639956 +/-— 0.0000029
ElecElec = -2.5984 +/- 0.0018
MPC = -2.3339 +/- 0.0020
KEcorr = 0.0355832891 +/- 0.0000000083
BlockWeight = 5122 +/- 12
BlockCPU = 0.25460 +/- 0.00049
AcceptRatio = 0.970214 +/- 0.000033
Efficiency = 20116.754 +/- 0.000
Corrected Energy = -10.25132 +/- 0.00090

All energies are given in Hartrees and the BlockCPU is given in seconds. Serial correlations are accounted for by using
the blocking technique. This tool is used extensively by the other analysis tools.

With those preliminaries in hand, we will use the PlotTstepConv.pl tool to analyze the convergence of the DMC calcula-
tions with respect to the time step. Run the tool as follows:

PlotTstepConv.pl diamond-dmcTsteps.xml 50

Generated on Mon Jul 23 2012 05:55:10 for QUCPACK by Doxygen

6.5 Performing DMC Calculations 35

Note that rather than actual data files, this tool directly analyzes the QMCPACK input file to determine the data to plot.
The output of the tool is shown:

timestep convergence of DMC
-10.549 T T T T T T T T

10,5495 | 1

1055 | [1
-10.5505 | 1
10551 | 1
-10.5515 | 1
-10.552 | I 1
10.5525 | 1
10.553 | l 1
105535 | J 1

-10.554

-10.5545 : : : :
0 0005 0.01 0015 0.02 0.025 0.03 0.035 0.04

timestep

energy (Ha)

! ! ! !

Figure 6.5: Total DMC energy as a function of time step for diamond

The trend line that is drawn may be wildly inaccurate especially if large time steps are included. In this case, there
appears to be a very weak dependence on the time step and a time step of 0.02 appears to be a good candidate for
future DMC calculations.

6.5.1 Two-Body Finite Size Effects

The other source of finite size effects comes from the spurious interactions of electrons in the simulation cell with their
periodic images in neighboring cells. In DFT calculations these errors are not present because the exchange correlation
functionals which deal with these interactions are all derived from calculations on the electron gas that are converged to
the limit of infinitely large simulation cells. In this section we will introduce strategies for the mitigation of these two-body
finite size effects.

6.5.1.1 Creating and Using Supercells

The simple solution to reducing the two-body finite size effects is to increase the size of the simulation cell. This can
be done in two ways. First, the simulation cell specified in the DFT calculation can be explicitly made into a supercell.
The author generally avoids this approach because the size of the wavefunction increases as the cube of the multiple of
the number of primitive cells. In practice the required memory will rapidly outstrip what is available on the nodes of your
supercomputer and the calculations will become intractable.

The other approach to generating supercells is to use Bloch’s theorem and the repeated zone scheme to generate the
wavefunction only in the primitive cell. This recognizes that the wavefunction for each band is just a periodic function
times a simple phase factor anywhere in space. Thus, by generating the wavefunction in the primitive cell for the k-points
corresponding to these phase factors, the full supercell’s wavefunction can be reconstructed by using a vastly smaller
amount of data. The memory required for this approach scales only linearly with the number of copies of the primitive
cell.

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

36 Using PWSCF and QMCPACK to perform total energy calculations of condensed systems

Supercells should also be chosen so as to minimize the distance between points in the supercell and their images. As
an example, a long skinny supercell will have much larger finite size errors than a cubic one with the same volume.
setup-gmc.pl handles the search for an optimal supercell by searching through all possible combinations with a given
number of primitive cell copies and determining the radius of the largest sphere which fits inside these trial supercells.
The supercell which fits the largest sphere is then chosen. All of the methods available to setup-gmc.pl take as an
optional argument —supercellsize, and will then produce DFT or gmc simulations adapted to this supercell.

The choice remaining is how large of a supercell should be used. Supercells containing all numbers of copies of the
primitive cell are not equal in terms of their computational efficiency. As an example, multiples of the primitive cell
that can be made into a cube are advantageous because the number of electrons necessary to get a certain distance
between points in the supercell and their images (thereby minimizing finite size effects) is relatively small. The tool
getBestSupercell.pl can be used to search a range of possible supercell sizes and report on the best ones in terms of
efficiency. It is invoked as follows:

getBestSupercell --min 2 --max 32 --maxentry 5 diamond-scf.in

min and max control the range of supercells which should be searched and maxentry specifies the size of the search
within each of these supercells. Due to the sub-optimal algorithm used by this tool, it is rather slow but fortunately only
has to be run once for any given primitive cell geometry.

In the case of diamond, the output of this command searching for supercells having between 2 to 64 copies of the
primitive cell shows particularly advantageous supercells for the following multiples: 4, 14, 32, 66 and 108. A finite size
scaling study for this system should do calculations on those supercells which searching for convergence.

Now to do calculations on a supercell which has 4 copies of the primitive cell, you would use the following string of
commands.

setup-gqmc.pl --genwfn --supercellsize 4 diamond-scf.in
pw.x < diamond-S4-nscf.in > diamond-S4-nscf.out
pw2gmcpack.x < diamond-S4-pw2x.in > diamond-S4-pw2x.out
wfconvert --nospline --eshdf diamond-S4.h5 \
out/diamond.pwscf.h5 >& diamond-S4-wfconvert.out
setup-gmc.pl --optwfn --supercellsize 4 --splfactor 0.7 \
--wvfcnfile diamond-S4.h5 —--vmctimestep 0.8 —--vmcblocks 512 \
—-vmcwalkers 128 —--vmcsteps 5 --optsamples 32768 —--optloops 16 \
—-onebodysplinepts 4 --twobodysplinepts 4 diamond-scf.in
cd optimization-S4
gmcapp opt-diamond-S4.xml >& opt-diamond-S4.out
cd ..
setup-gmc.pl --dmc --supercellsize 4 --wvfcnfile diamond-8twists.h5 \
--walkers 1024 --vmcblocks 64 --vmcsteps 5 —--vmctimestep 1.0 \
--dmcblocks 500 --dmcwarmupsteps 200 --dmcsteps 5 —-dmctstep 0.02 \
diamond-scf.in
cd dmc-54
gmcapp diamond-S4-dmc.xml

Note that as above in the twist averaging example, it is not necessary to reconverge the dmc timestep and the meshfactor
when changing supercell size.

6.5.1.2 Two-Body Finite Size Corrections

While the supercell approach is guaranteed to reduce the finite size effects, it is expensive. The cost of DMC calculations
scales as the cube of the number of electrons. Given that we are often looking for per atom quantities, this reduces the
actual cost to the square of the number of electrons. However, this still becomes extremely computationally demanding
quite quickly.

For this reason, several two-body finite size correction schemes are available which attempt to estimate the two-body
finite size errors and correct them. Typically we use two of these, the Model Periodic Coulomb interaction to correct the
potential energy and the scheme of Chiesa, Ceperley and Martin to correct the kinetic energy. The necessary quantities
are calculated automatically using the tools in this tutorial, with energy.pl for instance giving a line: Corrected Energy
which includes both of these corrections.

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

6.6 Conclusion 37

While these corrections are not perfect for the smallest cell sizes, they do give a significantly better convergence of the
total energy with cell size.

6.5.2 Putting it all Together

Although it will be far too computationally demanding for this tutorial, one should converge the parameters of interest
with respect to the supercell size before performing detailed studies. In the case of diamond, this would involve repeating
the calculations as specified above but with different —supercellsize’s. Additionally, multiple supercell twists should be
included via the —kgrid option.

Once this has been done, the tool PlotFsConv.pl can be used to produce plots using the command

PlotFsConv.pl —--minsize 14 diamond-scf.in

Note that the extrapolation of both the calculations with the 2 body correction and without go to the same value in the
infinite system limit. If were not the case, it would suggest that there were difficulties (for example timestep convergence
or insignificant twist averaging) and the finite size corrections should not be trusted.

Finite Size Scaling

-11.62 Twist Averaged DMC + DFT Correction -~ ® —

11600 | Twist Averaged DMC + 2body + DFT Correction |

-11.624 1
-11.626 | 1
11628 F ® 1
-11.63 | 1
-11.632 | ° :
-11.634 1
-11.636 - 1

-11.638 ¢ . L . . 3
1/1081/66 1/32 114
1 /Ngells

Energy / cell (Hartree)
]

Figure 6.6: Total DMC energy vs supercell size. Convergence is achieved with a supercell that contains 66 copies of
the primitive cell.

6.6 Conclusion

This tutorial has covered using pwscf and QMCPACK to perform DMC calculations on diamond. The convergence
of technical parameters including the b-spline mesh, dmc timestep, twist averaging and supercell size are specifically
addressed. At this point, the reader should know how to perform converged DMC calculations on similar condensed
systems.

6.7 Acknowledgment

This tutorial was created with support from Sandia National Laboratories.

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

38 Using PWSCF and QMCPACK to perform total energy calculations of condensed systems

Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Ad-
ministration under Contract No. DE-AC04-94AL85000.

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

Chapter 7

Guide for the developers

7.1 About QMCPACK

7.2 Documentation

Download doxygen-related files:

svn co https://subversion.assembla.com/svn/gmcpack/pubs/amcpack-ug/doxy
gmcpack-doc

In gmcpack-doc directory, modify Doxygen.ug file

STRIP_FROM_PATH = full-path-of-gmcpack-doc

and run doxygen
doxygen Doxygen.ug
These are created by doxygen:

html index.html, view with any browser
latex refman.tex, use pdflatex to generate a pdf file
One can change the location of these directories by setting OUTPUT_DIRECTORY in Doxygen.ug, e.g.,

OUTPUT_DIRECTORY = /home/foo/public_html/

Currently, these pages are used in Doxygen.ug

gmcpack_main.html Main Page

gettingstarted.html Getting and building QWCPACK
inputxml.html About I/O of QMCPACK

solids_cecam2012.html Tutotial given at CECAM QMC school 2011

developers.html This document for the developers

40 Guide for the developers

faq.html Frequently asked questions

doxygen is a powerful tool that can generate both good html and latex documentation. Check out doxygen
document for more information.

7.3 How to add a page to this document

» Create a file mypage.html and simply start a page as

/** \page a_page A new page
Say anything in plain text, html or latex

*/

+ Add mypage.html to INPUT of Doxygen.ug

INPUT =\
gmcpack_main.html \
gettingstarted.html \
inputxml.html \
solids_cecam2012.html \
developers.html \
mypage.html \

fag.html \

license.html

* Run doxygen

doxygen Doxygen.ug

Each page becomes a new page in html and a chapter in latex. Use page_template.html as a template for a new page.

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

http://www.stack.nl/~dimitri/doxygen/starting.html
http://www.stack.nl/~dimitri/doxygen/starting.html

Chapter 8

Construction of a many-body wavefunction

8.1 wavefunction

detemrinantset element instantiates a Fermionic wavefunction that will be added to its parent wavefunction as

<wavefunction target="e">
<determinantset>
</determinantset>

</wavefunction>

Fermionic wavefunctions are
M
Was =Y D! (9)D}(9),
i=1
where {¢} denotes a set of single-particle orbitals (SPOs). A SPO can represented by a linear combination of a basis
set, e.g., atom-centered spherical orbitals, as ¢; = Y., Ci a|t).

The relationship among various classes are schematically given here:

determinantset

+basisset
+sposet
(slaterdeterminant | multideterminant)

L\

slaterdeterminant multideterminant
jm) 7
LN
determinant sposet csf
e
basisset

Figure 8.1: Fermion wavefunction

There are several builder/factory classes involved. The map between xml node and the responsible class is given

42 Construction of a many-body wavefunction

determinantset SlaterDetBuilder

basisset create BasisSetFactory
sposet create BasisSetFactory
backflow prepare BackFlow transformation

slaterdeterminant create SlaterDet or SlaterDetWithBackflow

multideterminant create MultiSlaterDeterminant

Within a scope, there is only one instance of each object, .e.g, a BasisSetFactory is used for both basisset and sposet.

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

Chapter 9

Frequently Asked Questions

9.1 General questions

9.1.1 Compilers
Use one of these compilers

* GNU 4.2.x higher : older GNU compilers do not support OpenMP
* Intel compilers

» IBM XL compilers

There is no plan to support other compilers by the developers.

9.1.2 Parallelization in QWCPACK

We use hybrid method MPI-X where X=OpenMP or Cuda. OpenMP is enabled by default, unless the compilers do not
support OpenMP. In this case, we strongly recommend getting newer compilers.

MPI is optional but using it is highly recommended.

9.1.3 Numerical libraries

Blas/Lapack are essential for any scientific applications. On any platform, vendor provided numerical libraries should be
used. Other factor to consider in selecting Blas/Lapack is the compilers.

These are used by the developers

1. MKL : Intel compilers on x86 platforms
2. atlas : GNU compilers on x86 platforms

3. LibSci : GNU compilers on Cray systems

N

. Lapack/ESSL : on IBM systems

44 Frequently Asked Questions

9.2 Running QMUCPACK

9.2.1 Using multiple threads

Set OMP_NUM_THREADS:

export OMP_NUM_THREADS=12
./gmcapp input.xml

9.22 How to run QMCPACK with MPI

Check out what MPI library is used on your platform.
Often, using mpirun is all you need:

export OMP_NUM_THREADS=6
mpirun -np 2 ./gmcapp input.xml

9.3 Build problems

9.3.1 Failed to link blas/lapack

If the automatic detection fails with cmake, set LAPACK environment. For example in bash,

export LAPACK="-L/usr/lib64 -llapack -lblas"

and run cmake again.

On IBM systems, use ESSL and mass(v) libraries. Since ESSL does not support important functions of LAPACK used
in QMPACK, it is always necessary to build and link LAPACK as well as ESSL library. Setting LAPACK environment
should work, e.g.

export LAPACK="-L${LAPACK_LIBDIR} -lnameoflapack -lessl -lmass -lmassv"

Note that the name of LAPACK library and mass libraries (and where they are located) can vary on different systems.
Consult the system documentation. If all these fail, check IBM Power running Linux as an example to make a toolchain
file that works on your system.

9.3.2 Failed to link MKL
In general, toolchains files are updated to reflect the changes in MKL and synchronizing with the repository should fix
the problems.

With Intel Composer XE 2011, MKLROOQT is used to search header files and set the link flags. Check out your environ-
ment.

$ env | grep MKLROOT
MKLROOT=/opt/intel/composer_xe_2011_spl.8.273/mkl

If problems persist, try these:

1. Checkout Intel Math Kernel Library Link Line Advisor
2. Select sequential for "Select sequential or multi-threaded layer"

3. Set the result in "Use this link line:" to MKL environment variable

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/

9.3 Build problems 45

9.3.3 Failed to find XYZ package

CMakeCache.txt in your build directory can be edited to "fix" problems with any library.
When a library is not found, CMakeCache.txt has SOMETHING-NOTFOUND as
//Path to a file.

XYZ_INCLUDE_DIR:PATH=SZLIB_INCLUDE_DIR-NOTFOUND

//Path to a library.
XYZ_LIBRARIES:FILEPATH=SZLIB_LIBRARIES-NOTFOUND

Simply search and replace the path name for the reliated library.

- HDF5

//Path to a file.
HDF5_INCLUDE_DIR:PATH=/usr/local/gnu-4.6.3/hdf5-1.8.9/include

//Path to a library.
HDF5_LIBRARIES:FILEPATH=/usr/local/gnu-4.6.3/hdf5-1.8.9/1ib/1ibhdf5.s0

¢ libxml2

//Path to a library.
LIBXML2_LIBRARIES:FILEPATH=/usr/lib/x86_64-linux-gnu/libxml2.so

//Path to a file.
LIBXML_INCLUDE_DIR:PATH=/usr/include

- FFTW

//Path to a file.
FFTW_INCLUDE_DIR:PATH=/usr/local/gnu-4.6.3/fftw3.3/include

//Path to a library.
FFTW_LIBRARIES:FILEPATH=/usr/local/gnu-4.6.3/fftw3.3/1ib/libfftw3.a

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

46

Frequently Asked Questions

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

Chapter 10

University of lllinoiss/NCSA Open Source License

Copyright (c) 2003, University of lllinois Board of Trustees.
All rights reserved.

Developed by: Jeongnim Kim Condensed Matter Physics, National Center for Supercomputing Applications, University
of lllinois Materials computation Center, University of lllinois http: //gmcpack.cmscc.org/

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal with the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimers.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following dis-
claimers in the documentation and/or other materials provided with the distribution. Neither the names of the NCSA, the
MCC, the University of lllinois, nor the names of its contributors may be used to endorse or promote products derived
from this Software without specific prior written permission.

THE SOFTWARE IS PROVIDED "AS 1S", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDI-
NG BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHER-
WISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
WITH THE SOFTWARE.

http://qmcpack.cmscc.org/

48

University of lllinois/NCSA Open Source License

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

Chapter 11

File Index

11.1 File List

Here is a list of all files with brief descriptions:

developers.html L e e 51
fag.html . . e 51
forge.ntml . . o e 51
gettingstarted.html L e 51
inputxmbLhtml . . . L e 51
license.html L e e e e 51
othertools.html o 51
gmepack_main.html L e e e 51
solids_cecam2012.html e 51

wavefunctionbuilder.html L L e e 51

50

File Index

Generated on Mon Jul 23 2012 05:55:10 for QMICPACK by Doxygen

Chapter 12

File Documentation

12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

12.9

developers.html File Reference
fag.html File Reference

forge.html File Reference
gettingstarted.html File Reference
inputxml.html File Reference
license.html File Reference
othertools.html File Reference
gmcpack_main.html File Reference

solids_cecam2012.html File Reference

12.10 wavefunctionbuilder.html File Reference

	QMCPACK Documentation
	Introduction
	Major changes

	Getting started
	Required tools and libraries
	External packages

	Advanced: cmake
	Short introduction to cmake
	Customizing a cmake toolchain file

	QMCPACK I/O
	Main input file
	About XML in QMCPACK
	Reserved attributes and their implicit relationships

	Generic XML elements
	parameter
	include
	attrib

	simulation: Root element
	Defining physical entities
	qmcsystem
	simulationcell
	particleset
	group

	hamiltonian
	pairpot

	wavefunction

	Interface Utilities
	Quantum espresso
	Generating wavefunction files from PWSCF
	Using the converted files in QMCPACK
	Molecular calculations using PW codes

	Gamess
	wfconvert package

	QMC School 2012
	Basics on Forge at NCSA
	Setups for QMCPACK

	Using PWSCF and QMCPACK to perform total energy calculations of condensed systems
	Introduction
	Initial DFT Calculations
	Pseudopotentials

	Creating and testing wavefunctions for QMCPACK
	Extracting Wavefunctions at Particular k-points

	Optimizing Jastrow Factors within QMC
	Testing Convergence of the Splines in QMCPACK

	Performing DMC Calculations
	Two-Body Finite Size Effects
	Creating and Using Supercells
	Two-Body Finite Size Corrections

	Putting it all Together

	Conclusion
	Acknowledgment

	Guide for the developers
	About QMCPACK
	Documentation
	How to add a page to this document

	Construction of a many-body wavefunction
	wavefunction

	Frequently Asked Questions
	General questions
	Compilers
	Parallelization in QMCPACK
	Numerical libraries

	Running QMCPACK
	Using multiple threads
	How to run QMCPACK with MPI

	Build problems
	Failed to link blas/lapack
	Failed to link MKL
	Failed to find XYZ package

	University of Illinois/NCSA Open Source License
	File Index
	File List

	File Documentation
	developers.html File Reference
	faq.html File Reference
	forge.html File Reference
	gettingstarted.html File Reference
	inputxml.html File Reference
	license.html File Reference
	othertools.html File Reference
	qmcpack_main.html File Reference
	solids_cecam2012.html File Reference
	wavefunctionbuilder.html File Reference

