Selected topics in diffusion Monte Carlo: Lecture III

Claudia Filippi

Instituut-Lorentz, Universiteit Leiden, The Netherlands

Summer School: QMC from Minerals and Materials to Molecules
July 9-19, 2007, University of Illinois at Urbana-Champaign
Did we remove bias introduced by wave function?

We wanted to go beyond VMC → **Fixed-node approximation**

Results depend on the nodes of the trail wave function Ψ

How well does it work if we do not worry too much about Ψ?
DMC as black-box approach?

How well are we doing with a simple Ψ?

One determinant of natural orbitals, 6-311++G(2d,2p) basis

Atomization energy of the 55 molecules of the G1 set

Mean absolute deviation from experiments ϵ_{MAD}

<table>
<thead>
<tr>
<th>QMC</th>
<th>CCSD(T)/aug-cc-pVQZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ_{MAD}</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>2.8 kcal/mol</td>
</tr>
</tbody>
</table>

We are doing very well without much effort on Ψ!
How far can we go with the no-brain-no-pain approach?

QMC CCSD(T) DFT/B3LYP

ϵ_{MAD} 2.9 2.8 2.5 kcal/mol

Disappointing how well B3LYP works!

But with some more effort . . . QMC can do much better!

Example: Atomization energy of P_2

<table>
<thead>
<tr>
<th></th>
<th>DMC one-det</th>
<th>DMC multi-det</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>107.9(2)</td>
<td>115.9(2)</td>
<td>116.1(5)</td>
</tr>
</tbody>
</table>

Alleviating wave function bias by optimization

How do we obtain the parameters in the wave function?

$$\Psi(r_1, \ldots, r_N) = J \sum_k d_k D_k^{\uparrow} D_k^{\downarrow}$$

C_{10}N_2O_2H_7^- 70 electrons and 21 atoms
VTZ s-p basis + 1 polarization
3 s + 3 p + 1 d functions for C, N, O
2 s + 1 p for H

▷ Parameters in the Jastrow factor J (≈ 100)
▷ CI coefficients d_k (< 10)
▷ Linear coefficients in expansion of the orbitals (5540 !)
Jastrow-Slater wave function

\[\psi(r_1, \ldots, r_N) = \mathcal{J} \sum_{k} d_k D_k^\uparrow D_k^\downarrow \]

- Jastrow factor optimized in variance/energy minimization
- Orbitals and \(d_k \) coefficients in determinantal part are from
 - Hartree-Fock or DFT (LDA, GGA, B3LYP ...)
 - CI or multi-configuration self-consistent-field calculation
 - Optimized in variance minimization (small systems)
 - Optimized in energy minimization (very simple for \(d_k \))
Optimization of trial wave function

How do we find the best parameters in $\Psi = J\Phi$?

First thought Let us minimize the energy!

$$E_V = \frac{\int d\mathbf{R} \Psi^*(\mathbf{R}) \mathcal{H} \Psi(\mathbf{R})}{\int d\mathbf{R} \Psi^*(\mathbf{R}) \Psi(\mathbf{R})} = \int d\mathbf{R} \frac{\mathcal{H} \Psi(\mathbf{R})}{\Psi(\mathbf{R})} \frac{|\Psi(\mathbf{R})|^2}{\int d\mathbf{R} |\Psi(\mathbf{R})|^2} = \left\langle \frac{\mathcal{H} \Psi(\mathbf{R})}{\Psi(\mathbf{R})} \right\rangle_{\Psi^2}$$

Straightforward minimization on finite MC sample will not work!
Why problems with straightforward energy minimization?

Let us write the energy on a finite MC sample

Sample N_{conf} configurations from $|\psi(R, \{\alpha_0\})|^2$ with Metropolis

Energy of $\psi(R, \{\alpha\})$ on this set of MC configurations

$$E[\alpha] = \frac{1}{N_{\text{conf}}} \sum_{i=1}^{N_{\text{conf}}} \frac{\mathcal{H}\psi(R_i, \{\alpha\})}{\psi(R_i, \{\alpha\})} w_i$$

where

$$w_i = \left| \frac{\psi(R_i, \{\alpha\})}{\psi(R_i, \{\alpha_0\})} \right|^2 \left/ \sum_{i=1}^{N_{\text{conf}}} \left| \frac{\psi(R, \{\alpha\})}{\psi(R, \{\alpha_0\})} \right|^2 \right.$$

$E[\alpha]$ on a finite MC sample is not bounded from below

\Rightarrow Straightforward minimization of $E[\alpha]$ does not work
Is variance minimization an alternative?

Minimize the variance of the local energy

\[\sigma^2 = \frac{\langle \Psi | (\mathcal{H} - E_V)^2 | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \langle (E_{L}(\mathbf{R}) - E_V)^2 \rangle_{\Psi^2} \]

Would this work?

Consider variance on a finite number of MC configurations

\[\sigma^2[\alpha] = \sum_{i=1}^{N_{\text{conf}}} \left(\frac{\mathcal{H} \Psi(R_i, \{\alpha\})}{\Psi(R_i, \{\alpha\})} - \bar{E} \right)^2 w_i \]

\[\sigma^2 \] has a known lower bound \[\sigma^2 = 0 \]

Robust and stable optimization for very small values of \(N_{\text{conf}} \)
Variance minimization

- Variance minimization on a fixed set of MC configurations

\[\sigma^2[\alpha] = \sum_{i=1}^{N_{\text{conf}}} \left(\frac{\mathcal{H}\psi(R_i, \{\alpha\})}{\psi(R_i, \{\alpha\})} - \bar{E} \right)^2 w_i \]

- \(\bar{E} \) substituted with \(E_{\text{guess}} \) a bit smaller than current estimate \(\bar{E} \)

\(\Leftrightarrow \) Minimize a combination of variance and energy

- \(w_i \) must be limited to a max value (or some \(R_i \) may dominate)

- \(N_{\text{conf}} = 2000-3000 \) for 100 parameters in as many as 800 dim

- Variance minimization on-the-fly by computing gradient/Hessian

See next week lecture by Umrigar
Variance minimization

Other advantages

▷ All eigenstates have zero variance
 ⇒ It is possible to optimize true excited states
▷ Cusp conditions or other constraints easily added
 ⇒ Minimize $\chi^2 = \sigma^2 + \text{penalty functions}$
▷ Efficient procedures to optimize a sum of squares
 e.g. Levenberg-Marquard

Main disadvantage

▷ It is variance not energy minimization
What about energy minimization?

We want the parameters in Ψ which give lowest VMC energy

But it would seem simple !?!

Let us compute gradient and Hessian of the energy in VMC
Energy minimization and statistical fluctuations

Wave function Ψ depends on parameters $\{\alpha_k\}$

Energy and derivatives of the energy wrt parameters $\{\alpha_k\}$ are

$$E_V = \int d\mathbf{R} \frac{\mathcal{H}\Psi(\mathbf{R})}{\Psi(\mathbf{R})} \frac{|\Psi(\mathbf{R})|^2}{\int d\mathbf{R} |\Psi(\mathbf{R})|^2} = \langle E_L \rangle_{\Psi^2}$$

$$\partial_k E_V = \left\langle \frac{\partial_k \Psi}{\Psi} E_L + \frac{\mathcal{H} \partial_k \Psi}{\Psi} - 2E_V \frac{\partial_k \Psi}{\Psi} \right\rangle_{\Psi^2}$$

$$= 2 \left\langle \frac{\partial_k \Psi}{\Psi} (E_L - E_V) \right\rangle_{\Psi^2}$$

The last expression is obtained using Hermiticity of \mathcal{H}
Use gradient/Hessian expressions with smaller fluctuations

Two mathematically equivalent expressions of the energy gradient

\[\partial_k E_V = \left\langle \frac{\partial_k \Psi}{\Psi} E_L + \frac{\mathcal{H} \partial_k \Psi}{\Psi} - 2E_V \frac{\partial_k \Psi}{\Psi} \right\rangle \Psi^2 = 2 \left\langle \frac{\partial_k \Psi}{\Psi} (E_L - E_V) \right\rangle \Psi^2 \]

Why using the last expression?

Lower fluctuations \(\to 0 \) as \(\Psi \to \Psi_0 \)
Computation of Hessian \rightarrow Play similar tricks as for the gradient!

Rewrite expression in terms of covariances
$\rightarrow \langle ab \rangle - \langle a \rangle \langle b \rangle$ usually smaller fluctuations than $\langle ab \rangle$

Optimization of \mathcal{J}

5 orders of magnitude efficiency gain wrt use of original Hessian

C. Umrigar and C. Filippi, PRL 94, 150201 (2005)
Energy minimization is possible

... with simple modifications of straightforward approach

Various energy minimization schemes are available:

- Stochastic reconfiguration (Sorella, Casula)
- Energy fluctuation potential (Fahy, Filippi, Prendergast, Schautz)
- Perturbative method (Filippi, Scemama)
- Hessian method (Umrigar, Filippi, Sorella)
- Linear method (Nightingale, Umrigar, Toulouse, Filippi, Sorella)

See next week lecture by Umrigar
Importance of optimizing the wave function

Example: Excitation energy of hexatriene (C_6H_8)

<table>
<thead>
<tr>
<th>State</th>
<th>Wave function</th>
<th>E_{VMC}</th>
<th>E_{DMC}</th>
<th>ΔE (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^1A_g</td>
<td>HF</td>
<td>-38.684(1)</td>
<td>-38.7979(7)</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>B3LYP</td>
<td>-38.691(1)</td>
<td>-38.7997(7)</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>optimized</td>
<td>-38.691(1)</td>
<td>-38.7992(7)</td>
<td>–</td>
</tr>
<tr>
<td>1^1B_u</td>
<td>CAS(2,2)</td>
<td>-38.472(1)</td>
<td>-38.5910(7)</td>
<td>5.63(3)</td>
</tr>
<tr>
<td></td>
<td>B3LYP</td>
<td>-38.482(1)</td>
<td>-38.6030(7)</td>
<td>5.35(3)</td>
</tr>
<tr>
<td></td>
<td>optimized</td>
<td>-38.493(1)</td>
<td>-38.6069(8)</td>
<td>5.23(3)</td>
</tr>
<tr>
<td></td>
<td>expt.</td>
<td></td>
<td></td>
<td>5.22</td>
</tr>
</tbody>
</table>
Fixed-node diffusion Monte Carlo and excited states

Finds the best solution with the same nodes as trial Ψ

Is fixed-node DMC variational?

For lowest state in each 1-dim irreducible representation

What about “real” excited states?

In general, exact excited state for exact nodal structure

For excited states, even bigger role of the trial wave function

→ Enforces fermionic antisymmetry + selects the state
Excited states and the trial wave function

Dependence of DMC energy from wave function $\Psi = \mathcal{J} \sum_i c_i D_i$

Lowest singlet excitation along torsional path of formaldimine

At 0° and 90°, ground and excited states have different symmetry
Otherwise, same symmetry \rightarrow “Real” excited state
Excited state optimal wave function

Wave functions for multiple states of the same symmetry

$$\psi_I(r_1, \ldots, r_N) = \sum_i c_i^I \mathcal{J}(r_1, \ldots, r_N) \times D_i(r_1, \ldots, r_N)$$

Common set of parameters in \mathcal{J} and D_i but different coefficients c_i^I

Optimize parameters in \mathcal{J} and D_i by state averaging

$$E_{SA} = \sum_I w_I \frac{\langle \psi_I | H | \psi_I \rangle}{\langle \psi_I | \psi_I \rangle}$$

and preserve orthogonality through coefficients c_i^I

Schautz and Filippi, J. Chem. Phys. 120, 10931 (2004); Filippi (2007)
Excitation energies of ethene C_2H_4

Difficulties: Valence-Rydberg mixing + core relaxation

Schautz and Filippi, JCP (2004)
Correlated sampling in VMC

Given two operators \mathcal{O}, \mathcal{O}' and wave functions Ψ, Ψ', compute

$$
\bar{\mathcal{O}}' - \bar{\mathcal{O}} = \frac{\langle \Psi' | \mathcal{O}' | \Psi' \rangle}{\langle \Psi' | \Psi' \rangle} - \frac{\langle \Psi | \mathcal{O} | \Psi \rangle}{\langle \Psi | \Psi \rangle}
$$

Do NOT perform independent runs → Use correlated sampling
To compute differences more accurately than separate quantities

Example: Map out potential energy surface ⇒ Compute ΔE

DFT/QC methods → Smoothly varying (systematic) error
Again problems in QMC with statistical fluctuations!
Interatomic forces and geometry optimization

Customary practice: Use DFT or QC geometries

One possible route → Compute forces by finite differences

Why problems with statistical fluctuations?

Example: Energy of a dimer versus bond length

⇒ Forces cannot be computed from independent runs
Correlated sampling: The computation of potential energy surfaces

Primary geometry \rightarrow \mathcal{H} \quad \Psi \quad E

Secondary geometry \rightarrow \mathcal{H}_s \quad \Psi_s \quad E_s

\[E_s - E = \frac{\langle \Psi_s | \mathcal{H}_s | \Psi_s \rangle}{\langle \Psi_s | \Psi_s \rangle} - \frac{\langle \Psi | \mathcal{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle} \]

No independent runs \rightarrow MC configurations only from reference \Psi^2

\[E_s - E = \frac{1}{N_{\text{conf}}} \sum_{i=1}^{N_{\text{conf}}} \left\{ \frac{\mathcal{H}_s \Psi_s(R_i)}{\Psi_s(R_i)} w_i - \frac{\mathcal{H}(\Psi(R_i))}{\Psi(R_i)} \right\} \]

\[w_i = \frac{|\Psi_s(R_i)/\Psi(R_i)|^2}{N_{\text{conf}}} \frac{1}{\sum_{j=1}^{N_{\text{conf}}}} \frac{1}{|\Psi_s(R_j)/\Psi(R_j)|^2} \]

Efficient if \(w_i \approx 1 \) and \(\mathcal{H} \) and \(\mathcal{H}_s \) closely related
Efficiency gain from correlated sampling

Example: B$_2$, 1 determinant + simple Jastrow factor

E at experimental equilibrium bond length $R_0 = 3.005$ a.u.

E_s at stretched bond length by $\Delta R = -0.2, \ldots, 0.2$ a.u.

Compute $[E_s - E]$ from independent runs $\rightarrow \Delta E_{\text{ind}}$
from correlated sampling $\rightarrow \Delta E_{\text{corr}}$

Efficiency gain = $\frac{\sigma^2(\Delta E_{\text{ind}})}{\sigma^2(\Delta E_{\text{corr}})}$

Note: We used space-warp coordinate transformation
A simple improvement: Space-warp coordinate transformation

We sample MC configurations from Ψ^2 for primary geometry

$$\mathcal{H} \quad \psi \quad R_{\alpha} \quad R = (r_1, \ldots, r_N)$$

$$\mathcal{H}_s \quad \psi_s \quad R_{s\alpha} \quad R = (r_1, \ldots, r_N)$$

$$\mathcal{H}_s \quad \psi_s \quad R_{s\alpha}^s \quad R^s = (r_1^s, \ldots, r_N^s)$$

↑ nuclei

↑ electrons

Electrons close to a nucleus move almost rigidly with the nucleus
Energy difference with space-warp transformation

\[E_s - E = \frac{1}{N_{\text{conf}}} \sum_{i=1}^{N_{\text{conf}}} \left\{ \frac{\mathcal{H}_s \psi_s(R^s_i)}{\psi_s(R^s_i)} w_i - \frac{\mathcal{H} \psi(R_i)}{\psi(R_i)} \right\} \]

with \(w_i = \frac{|\psi_s(R^s_i)/\psi(R_i)|^2 J(R_i)}{\frac{1}{N_{\text{conf}}} \sum_{j=1}^{N_{\text{conf}}} |\psi_s(R^s_j)/\psi(R_j)|^2 J(R_j)} \)

and \(J(R) \) Jacobian of transformation \(R \rightarrow R^s \)

rms fluctuations of \(F = \frac{\Delta E}{\Delta R} \)
Drift-diffusion-branching short-time Green’s function is

\[V = \nabla \psi / \psi \]

\[E_L = H \psi / \psi \]

\[\tilde{G}(R', R, \tau) \approx \mathcal{N} \exp \left[-\frac{(R' - R - V(R)\tau)^2}{2\tau} \right] \exp \left[-(E_L(R) + E_L(R'))\frac{\tau}{2} \right] \]

\[T(R', R, \tau) \]

A walker starts in \(R \) with weight \(w \)

- Drifts to \(R + V(R)\tau \)
- Diffuses to \(R' \)
- Move accepted with \(p = \min \left\{ 1, \frac{|\psi(R')|^2 \ T(R, R', \tau)}{|\psi(R)|^2 \ T(R', R, \tau)} \right\} \)
- Growth/decay \(w' = w \exp \left\{ - \left[(E_L(R) + E_L(R'))/2 - E_T \right] \tau \right\} \)
Correlated sampling in DMC

Primary walker \(R \rightarrow R' \leftarrow \text{Drift-diffusion + accept/reject} \\
\downarrow \quad \downarrow \\
Secondary walker \(R^s \rightarrow R^{s'} \leftarrow \text{Warp transformation} \\

PROBLEMS

▷ Dynamics of secondary walker is wrong

○ \(R \rightarrow R' \) with \(T(R', R, \tau) \)

○ \(R \rightarrow R^{s'} \) with warp transformation
 ⇒ Transition with \(T(R', R, \tau)/J(R) \) \text{ NOT } \(T_s(R^{s'}, R^s, \tau) \)
 ⇒ Secondary move accepted with probability \(p \) \text{ NOT } \(p_s \)

▷ Different nodes for primary and secondary walker
Correlated sampling in DMC: Approximate but accurate scheme

Observation: Correlated sampling in VMC is very efficient

⇒ Scheme similar to VMC but with results very close to DMC?

Correlated sampling in DMC: Approximate but accurate scheme

▷ Primary walker $\mathbf{R} \rightarrow \mathbf{R}' \leftarrow$ Drift-diffusion + accept/reject

▷ Secondary walker $\mathbf{R}^s \rightarrow \mathbf{R}^{s'} \leftarrow$ Warp transformation

▷ Keep ratios $W = \left| \frac{\psi_s(\mathbf{R}^s)}{\psi(\mathbf{R})} \right|^2 J(\mathbf{R})$ in averages as in VMC

If we stopped here \Rightarrow VMC and sample ψ^2 and ψ^2_s

▷ Growth/decay step

$$w = w \exp \left[- (E_L(\mathbf{R}) + E_L(\mathbf{R}')) \tau / 2 \right] \quad \text{with} \quad E_L = \frac{\mathcal{H}\psi}{\psi}$$

$$w_s = w \prod_{N_{\text{proj}}} \exp \left[- (E_L^s(\mathbf{R}^s) + E_L^s(\mathbf{R}^{s'})) \tau / 2 \right] \quad \text{with} \quad E_L^s = \frac{\mathcal{H}_s \psi_s}{\psi_s}$$

product over last N_{proj} generations
Correlated sampling: Error in bond length of 1st-row dimers

VMC and DMC from the PES obtained by correlated sampling

RMS errors of bond length (a.u.)

<table>
<thead>
<tr>
<th>Method</th>
<th>RHF</th>
<th>LDA</th>
<th>GGA</th>
<th>VMC</th>
<th>DMC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>∞</td>
<td>0.054</td>
<td>0.036</td>
<td>0.049</td>
<td>0.014</td>
</tr>
</tbody>
</table>

DMC always improves upon VMC
Continuum Diffusion Monte Carlo

Efficient on-the-fly computation of DMC energies on AIMD path

- At $t_{MD} = 0$, $\mathcal{H}(0)$. Equilibrate DMC population $\{\mathbf{R}, w\}$
- At $t_{MD} = 1$, $\mathcal{H}(1)$. Start from previous $\{\mathbf{R}\}$ and adjust w as

$$w = w \left| \frac{\Psi(\mathbf{R}; \mathcal{H}(1))}{\Psi(\mathbf{R}; \mathcal{H}(0))} \right|^2 \frac{\exp \left[-E_L(\mathbf{R}; \mathcal{H}(1))\tau \right]}{\exp \left[-E_L(\mathbf{R}; \mathcal{H}(0))\tau \right]}$$

- Few DMC steps (3!) sufficient to equilibrate population $\{\mathbf{R}', w'\}$
What about Hellman-Feynman theorem?

Consider $\mathcal{H}(\lambda)$ with λ parameter (nuclear coordinates)

\[
E(\lambda) = \frac{\langle \Psi(\lambda) | \mathcal{H}(\lambda) | \Psi(\lambda) \rangle}{\langle \Psi(\lambda) | \Psi(\lambda) \rangle} \quad \text{and} \quad \frac{dE(\lambda)}{d\lambda} = \frac{\langle \Psi(\lambda) | \frac{d\mathcal{H}(\lambda)}{d\lambda} | \Psi(\lambda) \rangle}{\langle \Psi(\lambda) | \Psi(\lambda) \rangle}
\]

True if $\Psi(\lambda)$ is an eigenstate or $\Psi_\alpha(\lambda)$ minimizes energy wrt α

Problems with Hellman-Feynman forces in QMC
Hellman-Feynman forces in QMC

- Large fluctuations \rightarrow Infinite for all-electron calculations!

\[
\partial_\alpha E = \langle \partial_{R_\alpha} \mathcal{H} \rangle_{\Psi^2} = \langle F_\alpha \rangle_{\Psi^2} \approx \langle \frac{1}{r^2} \rangle_{\Psi^2} = \text{finite}
\]

\[
\sigma^2(F_\alpha) = \langle F^2_\alpha \rangle_{\Psi^2} - \langle F_\alpha \rangle_{\Psi^2}^2 = \infty
\]

Solution: Reduced variance method by Assaraf-Caffarel

\[\tilde{F}_\alpha = F_\alpha + \Delta F_\alpha \text{ with } \langle \Delta F^2_\alpha \rangle_{\Psi^2} = 0 \text{ but } \sigma^2(\tilde{F}_\alpha) \text{ finite}\]

- If Ψ does not minimize $E_{\text{VMC}} \Rightarrow$ Systematic error in VMC
 Use energy-minimized wave functions

Application Ab-initio MD for high-pressure liquid Hydrogen
 Sorella and Attaccalite, cond-mat/0703800

Computation of forces/MD: Active field of research in QMC
Human and computational cost of a typical QMC calculation

<table>
<thead>
<tr>
<th>Task</th>
<th>Human time</th>
<th>Computer time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choice of basis set, pseudo etc.</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>DFT/HF/CI runs for Ψ setup</td>
<td>65%</td>
<td>10%</td>
</tr>
<tr>
<td>Optimization of Ψ</td>
<td>20%</td>
<td>30%</td>
</tr>
<tr>
<td>DMC calculation</td>
<td>5%</td>
<td>55%</td>
</tr>
</tbody>
</table>
References

- General reviews:
 Foulkes et al., Rev. Mod. Phys. 73, 33 (2001);

- Early applications of variational Monte Carlo:
 McMillan, Phys. Rev. 138, A4422 (1965);

- VMC and choice of transition matrix:
 Umrigar, Phys. Rev. Lett. 71, 408 (1993);
References

- **Cusp conditions:**

- **Spin-assigned wave function, spin contamination:**

- **Jastrow factor and role of e-e-e-n terms:**

- **Some references on diffusion Monte Carlo:**
 Reynolds *et al.*, J. Chem. Phys. 77 5593 (1982);
 Mitas, Shirley, and Ceperley, J. Chem. Phys. 95, 3467 (1991);
Variance minimization:

Correlated sampling for interatomic forces:

Zero-variance, zero-bias principle and Hellman-Feynman forces:
Assaraf and Caffarel, Phys. Rev. Lett. 83, 4682 (1999);
Assaraf and Caffarel, J. Chem. Phys. 113, 4028 (2000);
Assaraf and Caffarel, J. Chem. Phys. 119, 10536 (2003);
Sorella and Attaccalite, cond-mat/0703800