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Did we remove bias introduced by wave function?

We wanted to go beyond VMC — | Fixed-node approximation

Results depend on the nodes of the trail wave function W

How well does it work if we do not worry too much about W?



DMC as black-box approach?

How well are we doing with a simple W?
One determinant of natural orbitals, 6-3114++G(2d,2p) basis
Atomization energy of the 55 molecules of the G1 set

Mean absolute deviation from experiments eyiap

QMC CCSD(T)/aug-cc-pVQZ
EMAD 2.9 2.8 kcal/mol

Grossman, J. Chem. Phys. 117, 1434 (2002)

We are doing very well without much effort on W !



’ How far can we go with the no-brain-no-pain approach?

QMC CCSD(T)  DFT/B3LYP
EMAD 2.9 2.8 2.5 kcal/mol

Disappointing how well B3LYP works!
But with some more effort ... QMC can do much better!

Example: Atomization energy of P>

DMC one-det  107.9(2)
DMC multi-det 115.9(2) | kcal /mol
Experiment 116.1(5)

Grossman, J. Chem. Phys. 117, 1434 (2002)



Alleviating wave function bias by optimization ‘

How do we obtain the parameters in the wave function?

W(ry,...,rn) =J Y deDLD;
k

C1oN202H, 70 electrons and 21 atoms

VTZ s-p basis + 1 polarization
3s+3p+1d functions for C, N, O
2s+1p forH

9

> Parameters in the Jastrow factor J (= 100)
> Cl coefficients di (< 10)

> Linear coefficients in expansion of the orbitals (5540 !)



Customary practice for optimizing wave function

Jastrow-Slater wave function

U(ry,....rn) =J Y deDD;
k

> Jastrow factor optimized in variance/energy minimization

> Orbitals and dj coefficients in determinantal part are from

(¢]

Hartree-Fock or DFT (LDA, GGA, B3LYP ...)

o

Cl or multi-configuration self-consistent-field calculation

e}

Optimized in variance minimization (small systems)

o

Optimized in energy minimization (very simple for dy)



’Optimization of trial wave function‘

How do we find the parameters in V. = 7¢ 7
First thought| Let us minimize the energy!

JARW (RIMW(R) _ [ HUR) [W(RP _ HY(R)

B = TwReRuEr) )R UR) FRYERE " CUR)

Straightforward minimization on finite MC sample will work!



Why problems with straightforward energy minimization ?

Let us write the energy on a finite MC sample
Sample Ngopns configurations from |W(R, {ag})|* with Metropolis
Energy of W(R, {a}) on this set of MC configurations

1 " HY(R;, {a})
= N & VR o))

2 / Nconf
i=1

E[a] on a finite MC sample is not bounded from below

where )

V(R, {a})

V(R, {ao})

P =

‘ V(R;, {a})
V(R;, {ao})

= Straightforward minimization of E[a] does not work



Is variance minimization an alternative?

Minimize the variance of the local energy

2 (VI(H - Ev)*|V)

o2 = ) = ((EL(R) — Ev)*)y2

Would this work?

Consider variance on a finite number of MC configurations

Neonf H\II(R,-,{a}) N2
7l =2 (Ve F)

02 has a known lower bound

Robust and stable optimization for very small values of N.onf



Variance minimization (1)

> Variance minimization on a fixed set of MC configurations

Neonf 'H\U(R,-,{Oz}) N2
el= 3 (mn) E) ™

o E substituted with Eguess a bit smaller than current estimate E

< Minimize a combination of variance and energy
o w; must be limited to a max value (or some R; may dominate)

0 Neons =2000-3000 for 100 parameters in as many as 800 dim

> Variance minimization on-the-fly by computing gradient/Hessian

See next week lecture by Umrigar



’ Variance minimization

Other advantages

> All eigenstates have zero variance
= It is possible to optimize true excited states

> Cusp conditions or other constraints easily added
= Minimize x? = 02 + penalty functions

> Efficient procedures to optimize a sum of squares

e.g. Levenberg-Marquard

Main disadvantage

> It is variance energy minimization



What about energy minimization?

We want the parameters in W which give lowest VMC energy
But it would seem simple 7!

Let us compute gradient and Hessian of the energy in VMC



Energy minimization and statistical fluctuations‘

Wave function W depends on parameters {ov }

Energy and derivatives of the energy wrt parameters {ay} are

HY(R) [W(R)P

o= JRYR) TaRw@R)p e

- 3k\U H@k\U 8kw
okEy = <\U Er, + v —2Ey v >w2

The last expression is obtained using Hermiticity of H



’ Use gradient/Hessian expressions with smaller fluctuations‘

Two mathematically equivalent expressions of the energy gradient

——EL +

OEy — <8k\|l HOKW oV

Why using the last expression?

Lower fluctuations| — 0 as ¥ — WY,

_2F, X"
v v Ty

)

2

oV

v

(EL — Ev)>

Y2




‘ Computation of Hessian — Play similar tricks as for the gradient!

Rewrite expression in terms of | covariances

— (ab) — (a)(b) usually smaller fluctuations than (ab)
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orders of magnitude efficiency gain wrt use of original Hessian

C. Umrigar and C. Filippi, PRL 94, 150201 (2005)



Energy minimization is possible

... with simple modifications of straightforward approach
Various energy minimization schemes are available:

> Stochastic reconfiguration (Sorella, Casula)
>

Energy fluctuation potential (Fahy, Filippi, Prendergast, Schautz)

v

Perturbative method (Filippi, Scemama)

v

Hessian method (Umrigar, Filippi, Sorella)

v

Linear method (Nightingale, Umrigar, Toulouse, Filippi, Sorella)

See next week lecture by Umrigar



Importance of optimizing the wave function ‘

Example: Excitation energy of hexatriene (CgHg) &%4

State  Wave function Evac Epmc AE (eV)

1'A;| HF -38.684(1) -38.7979(7) -
B3LYP -38.691(1) -38.7997(7) -
optimized -38.691(1) -38.7992(7) -

1'B,| CAS(2,2) -38.472(1) -38.5910(7) 5.63(3)
B3LYP -38.482(1) -38.6030(7) 5.35(3)
optimized -38.493(1) -38.6069(8)  5.23(3)

expt. 5.22



Fixed-node diffusion Monte Carlo and excited states

Finds the best solution with the same nodes as trial W
Is fixed-node DMC variational?

For lowest state in each 1-dim irreducible representation

What about “real” excited states?

In general, exact excited state for exact nodal structure

For excited states, even bigger role of the trial wave function

— Enforces fermionic antisymmetry + selects the state



Excited states and the trial wave function

Dependence of DMC energy from wave function ¥ = 7| > . ¢;D;

Lowest singlet excitation along torsional path of formaldimine

DMC energies ° DMC (HF HOMO- LUMO)
[ e DMC (CIS)

e DMC (1l =i1)

® DMC (CASSCF- opt|m|zed)
e Quantum Chemistry-MRCI |

~
[=]

o
[=)
T

Excitation energy (eV)

0 15 30 45 60 75
Torsional angle (deg)

At 0° and 90°, ground and excited states have different symmetry

Otherwise, same symmetry — “Real” excited state



’ Excited state optimal wave function ‘

Wave functions for multiple states of the same symmetry

wl(r].?"'arN):ZCil j(r]_,...,l’N)X Di(rla"'er)
i

Common set of parameters in 7 and D; but different coefficients c,-’

Optimize parameters in J and D; by state averaging

ZW (V| H|W))
U

and preserve orthogonality through coefficients C,-’

Schautz and Filippi, J. Chem. Phys. 120, 10931 (2004); Filippi (2007)



Excitation energies of ethene C2H4‘

Difficulties: Valence-Rydberg mixing + core relaxation H

Schautz and Filippi, JCP (2004)
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Correlated sampling in VMC‘

Given two operators O, @’ and wave functions ¥V, W/ compute

L WOV (vo)
OOy T )

Do NOT perform independent runs — Use ’ correlated sampling

To compute differences more accurately than separate quantities

Example: Map out potential energy surface = Compute AE
DFT/QC methods — Smoothly varying (systematic) error

Again problems in QMC with statistical fluctuations!



Interatomic forces and geometry optimization

Customary practice: Use DFT or QC geometries

One possible route — Compute forces by finite differences

Why problems with statistical fluctuations?
Example: Energy of a dimer versus bond length

Independent runs Correlated sampling

= Forces cannot be computed from independent runs



Correlated sampling: The computation of potential energy surfaces

Primary geometry - H Vv E
Secondary geometry — Hg Wy E

(W[ Hs[Ws) — (VIH[W)

S AT S (1T

No independent runs — MC configurations only from reference W?

.1 e HVs(R)) — HY(R))
ES £ = Nconf i:l{ ws(Ri) ’ W(RI)}
w = [ (R)/V(R ffw (R))P

Efficient if w; ~ 1 and H and Hg closely related



Efficiency gain from correlated sampling

Example: By, 1 determinant + simple Jastrow factor

E at experimental equilibrium bond length Ry = 3.005 a.u.
E; at stretched bond length by AR = —-0.2,...,0.2 a.u.

Compute from independent runs — AEq

from correlated sampling — AEco.,

le+05

le+04

UQ(AEind)

Efficiency gain = 02(AEcorr)

1e+03¢

Efficiency gain

le+02¢

0.2 0.1 0 01 02
AR (a.u.)

Note: We used space-warp coordinate transformation



A simple improvement: Space-warp coordinate transformation ‘

We sample MC configurations from W? for primary geometry

H Vv R,
Hs Vs RS
Hs Vs RS,

1
nuclei

R :(rl,...,rN)

PANPAN

¢ —————o

Primary gec

Secondary geometry

PANA

*————o

arped secondary
geometry

Electrons close to a nucleus move almost rigidly with the nucleus



Energy difference with space-warp transformation ‘

e 1 Neont {HSWS(R;?)W. B H\U(R,-)}
S Nconf = wS(RT) 1 ‘-U(R,)
. W (RS)/W(R))*| J(Ri)
with w; = -
N, on S
Moot 21 WS(RJ)/W(RJ)) J(Rj)

and J(R) Jacobian of transformation R — R®
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Correlated sampling in DMC: A quick review of DMC‘

Drift-diffusion-branching short-time Green’s function is

V=V /v EL=HW/V

! !

T(R",R,7)

T

2

G(R,R,7) ~ Nexp |—

A walker starts in R with weight w
o Drifts to R+ V(R)7

o Diffuses to R’

V(R)2 T(R,R
o Move accepted with p:min{l V(RDI T(R, ’T)}

" [W(R)]> T(R,R,7)
o Growth/decay w' = w exp{—[(EL(R) + EL(R"))/2 — Er] 7}



Correlated sampling in DI\/IC‘

Primary walker R — R <« Drift-diffusion 4+ accept/reject

I I

Secondary walker R® — R% <« Warp transformation

PROBLEMS

> Dynamics of secondary walker is wrong
o R — R’ with T(R",R,7)
o R — R*¥ with warp transformation

= Transition with T(R’,R,7)/J(R) NOT T,(R¥ ,R% 1)
= Secondary move accepted with probability p NOT py

> Different nodes for primary and secondary walker



’Correlated sampling in DMC: Approximate but accurate scheme

: Correlated sampling in VMC is very efficient

= Scheme similar to VMC but with results very close to DMC?

Filippi, Umrigar, Phys. Rev. B 61, R16291 (2000)



Correlated sampling in DMC: Approximate but accurate scheme‘

> Primary walker R — R’ <« Drift-diffusion + accept/reject

I |

Secondary walker R® — R® <« Warp transformation

2

V. (R®
«(R°) J(R) in averages as in VMC

U(R)

> Keep ratios W = ‘

If we stopped here = VMC and sample W2 and W2

> Growth/decay step

w = wexp[—(EL(R)+ EL(R))7/2] with EL:HwW

N

T oexp[—(ES(R) + ES(RY))7/2] . o HeW
w = vl o rE®a®R) 7l T E

product over last Np.oj generations



Correlated sampling: Error in bond length of 1st-row dimers

VMC and DMC from the PES obtained by correlated sampling

RMS errors of bond length (a.u.)
RHF LDA GGA VMC DMC

oo 0.054 0.036 0.049 0.014

DMC always improves upon VMC

0.28

Error in bond length

0.24 N
020 . ® Restricted Hartree—Fock
N o LDA
0.16 \ ® GGA
N ® Variational Monte Carlo
- 012 N e Diffusion Monte Carlo
8 008
. N
5 004
] A\ =
& oo S
-0.04
-0.08
-0.12
-0.16
-0.20




‘Continuum Diffusion Monte Carlo‘

Grossman and Mitas, Phys. Rev. Lett. 94, 056403 (2005)

Efficient on-the-fly computation of DMC energies on AIMD path
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> At typ = 0, H(0). Equilibrate DMC population {R, w}
> At tmp = 1, H(1). Start from previous {R} and adjust w as

W ‘ V(R H(1)) ‘2 exp [~ E1(R; H(1))7]
V(R;H(0))| exp[—EwL(R;H(0))7]

> Few DMC steps (3!) sufficient to equilibrate population {R’, w'}



What about Hellman-Feynman theorem?‘

Consider H(\) with A parameter (nuclear coordinates)

by OOV aEey _ (VO[T v
= WO & )

if W(A) is an eigenstate or W, () minimizes energy wrt «

Problems with Hellman-Feynman forces in QMC




Hellman-Feynman forces in QMC‘

> Large fluctuations — Infinite for all-electron calculations!
1 -
aaE = <8RQH>\U2 = <FC¥>\U2 ~ <ﬁ>w2 f— f|n|te

0*(Fa) = (Fiwe — (Fa)e = 0

Solution: Reduced variance method by Assaraf-Caffarel

F, = Fo+ AF, with (AF2)y. =0 but o?(F,) finite

> If W does not minimize Eyne = Systematic error in VMC

Use energy-minimized wave functions

Ab-initio MD for high-pressure liquid Hydrogen

Sorella and Attaccalite, cond-mat/0703800

Computation of forces/MD: Active field of research in QMC



Human and computational cost of a typical QMC calculation

Task Human time Computer time
Choice of basis set, pseudo etc. 10% 5%
DFT/HF/CI runs for W setup 65% 10%
Optimization of W 20% 30%

DMC calculation 5% 55%
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