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Optimization of many-body wave functions

. Variance minimization vs. Variational Energy minimization

2. Energy optimization methods that work well:

1 Newton method (CJU, Filippi (2005))

2 Linear method (CJU, Toulouse, Filippi, Sorella, Hennig (2007)
(extension of Nightingale's method to nonlinear parms.))

3 Perturbative method (Scemama, Filippi(2006); Toulouse, CJU (2007))
(simplification of EFP method (Fahy, Filippi, Schautz, Prendergast))

. Stabilization of methods

. Results for:

1 NOy, decapentaene (CioH12) (convergence of Newton, advantage of

mixed energy and variance optim.)

Sip, Co (widely varying FN error)

First-row diatomics (agreement with experiment)

Ethene (excited states (Schautz, Filippi))

5 Wigner crystallization in quantum dots (floating gaussians (Guclu))

BN

. Optimization of DMC energy



Accuracy of Diffusion Monte Carlo

The problem:
Fixed-node error can be LARGE for these systems. e.g., the fixed-node
error for Cy total energy is 1.3 eV and for well-depth is 0.7 eV.

Possible solutions:

1. Solve the Fermion sign problem. Hard!
2. Develop:
1 Better forms of trial wave functions.
2.1.1 Casula and Sorella on geminals
2.1.2 Schmidt, and, Bajdich and Mitas on Pfaffians
2.1.3 Rios and Needs on backflow for nonfluid systems

2 Powerful optimization methods to systematically improve the nodes of
the trial wavefunctions.
2.2.1 CJU, Filippi, PRL, 94, 150201 (2005)
2.2.2 CJU, Toulouse, Filippi, Sorella, Hennig, PRL 98, 110201 (2007).
2.2.3 Toulouse, CJU, J. Chem. Phys., 126, 084102 (2007).



Almost all other errors reduced too

. Reduce fixed-node error (nodes move during optimization). Fixed
node errors can be LARGE.

. Reduce other systematic errors in the energy — pseudopotential
locality error, time-step error, population-control error.

. Reduce systematic error of observables that do not commute with the
Hamiltonian (mixed estimators, (Wo|A|W 1) not exact even for
nodeless V).

. Reduce statistical error.



Functional form of Trial Wave Function

Vr = (Z d,D}, D%) x J (i, rj, i)

e Determinants: ) anI, D},

D' and D! are determinants of single-particle orbitals ¢ for up (1) and
down () spin electrons respectively.

The single-particle orbitals ¢ are given by:
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¢(ri) - Z Cka Nka rir;fa € Cha fe Y/ka Mg, (I','a)
ok

e Jastrow: J(ri,rj,rij) =11 exp (Aai) HU exp (Bjj) Haij exp (Caij)

A,; = electron-ion correlation ™ Vatomtype O: J parms.
Bjj = electron-electron correlation ~ Ngtomtypfe of Ck, parms.
C.ij = electron-electron-ion correlation "~ "fatom Of Ck, parms.

~ eNatom of d, parms.
dny €k, Ck, and parms in J are optimized.  Power of QMC:
J parms. do work of d, parms.



Progress in optimization of Many-Body
Wavefunctions

Naive energy optim. — Variance optim. — Efficient energy optim.

— 1988 naive energy optimization, few (~ 3) parameters
1988 — 2001 variance optimization, ~ 100 parameters
2001 — efficient energy optimization, > 1000 parameters



Optimization of Many-Body Wavefunctions

A major advantage of quantum Monte Carlo methods is that there is no
restriction on the form of W (R). Hence any insight one may have, as
regards the nature of the many-body correlations, can be built into W1(R)
and tested. To exploit this freedom it is necessary to have a method for
optimizing arbitrary wavefunctions.

First thought: Minimize the energy on MC sample.
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Second thought: Minimize the variance of the local energy.
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Third thought: Minimize the energy using MC but not on MC sample.



Variance VS. Energy
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Advantages of Energy (or Mixed) Optim. vs. Variance Optim.

1. Want lowest energy; fluctuations are of secondary importance.
Energy and variance do not always go hand-in-hand enough.

2. Some parameters couple more strongly to energy than variance.

3. Energy-optimized W can be better for other expectation values
(Rothstein).

4. Hellman-Feynman theorem can be used for forces (when combined
with variance reduction methods).



Early energy optimization methods that worked well

Linear method for linear parameters:

M. P. Nightingale and Melik-Alaverdian, Phys. Rev. Lett., 87, 043401
(2001).

Effective fluctuation potential method:

» S. Fahy, in Quantum Monte Carlo Methods in Physics and Chemistry,
edited by M. P. Nightingale and C. J. Umrigar, [NATO ASI Ser. C.
525 101, 1999];

» Filippi and S. Fahy, J. Chem. Phys., 112, 3523 (2000);

» F. Schautz and S. Fahy, J. Chem. Phys., 116, 3533 (2002);

» D. Prendergast, D. Bevan and S. Fahy, Phys. Rev. B, 66, 155104
(2002);

» Friedemann Schautz and Claudia Filippi, J. Chem. Phys., 120, 10931
(2004).

Stochastic reconfiguration method:

» Sandro Sorella, Phys. Rev. B, 64, 024512 (2001);
» Casula and Sorella, J. Chem. Phys., 119, 6500 (2003).
> Sorella, PRB 71, 241103 (2005).



Current best energy-optimization methods

1. Newton method CJU, Filippi, PRL 94, 150201 (2005):
Add terms to the Hessian that contribute nothing in the limit of an
infinite MC sample, but cancel much of the fluctuations for a finite
MC sample.
Gain in efficiency: 3 orders of magnitude for NO5, more for CigH1o
compared to Newton of Lin-Zhang-Rappe.

2. Linear method (generalized eigenvalue problem):

1 Linear parameters: Nightingale, et al., PRL, 87, 043401 (2001)
Use asymmetric H to have zero variance property in the limit that the
basis functions span an invariant subspace.

2 Nonlinear parameters:
CJU, Toulouse, Filippi, Sorella, Hennig, PRL 98, 110201 (2007).
Choose freedom of normalization W(p, R) = N(p) ®(p, R) to make a
near optimal change in the parameters.

3. Perturbation theory in an arbitrary nonorthog. basis:
Toulouse, CJU, J. Chem. Phys., 126, 084102 (2007).
(Small modification of Scemama-Filippi (2006) perturbative EFP,
modification of the Fahy-Filippi-Prendergast-Schautz EFP method.)



Newton energy minimization method

Find parameter changes by solving linear equations:
hép = —g,

h is the Hessian and g is the gradient of the energy.
Two modifications of the straightforward Newton method:

1. Add terms to the Hessian that have zero expectation value on an
infinite MC sample but that cancel much of the fluctuations on a
finite sample.

2. Replace certain terms in the Hessian by other terms that are
approximately proportional to them but that fluctuate less.

These 2 changes improve the efficiency of the simple Newton method of
Lin, Zhang and Rappe by about 3 orders of magnitude.



Newton energy minimization method

_ [&3RyHY _ Hy(R)
E = <1Z E, + Hf’ - 2EZ’> <1/Z(EL - E)> (by Hermiticity).

s {3 ) 0)- () () ()

Identical to the Hessian in Lin, Zhang, Rappe.

Two changes:

1) Symmetrize — eigensystem is real

2) Noting that (Ey, j) = 0, rewrite in the form of a covariance

((ab) — (a}(b))

The fluctuations of (ab) — (a)(b) are in most cases smaller than those of
(ab), (e. g |f aand b are weakly correlated), and, they are much smaller if

VA a2 2 < |(a)] and a is not strongly correlated with 1/b.



Newton energy minimization method (cont.)
(i) e-0)-(2)a- (1)
() (e (20)- (2w

b P
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1) Additional terms =0 for infinite sample but cancel most of the

fluctuations for a finite sample.
2) Red terms fluctuate less than blue terms away from minimum. Ratio of

red terms to blue terms depends on v but is roughly independent of / and

Jj. Why?? Exploit that!

Ej=2

=2




Optimization of determinantal parameters

Different issues arise in optimizing Jastrow parameters and determinantal
parameters:

Jastrow: eigenvalues of Hessian have a range of 11 orders of magnitude!
Determinantal parameters: divergences in elements of Hessian and
Hamiltonian matrices.

E = <1i' (Er, — E)> (by Hermiticity).

(3 3)0)~(2)5- (204
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Leading divergences cancel! They cancel in the linear method too.
Remaining divergences do not seem to problematic. Do 2" order ones
cancel?

Ej=2




Linear method for linear parameters
M. P. Nightingale and Melik-Alaverdian, PRL, 87, 043401 (2001).

Given N basis functions, ¥;(R,) (dets. x Jastrow) find the lowest
eigenstate of the (projected) Hamiltonian.

Hyi(R Zu}, R,)Ej or B’ =BE

where B,j = ¢i(R,) and B! = Hi(R,) are Nyic x N and E is N x N.
The least-squares solution of these overdetermined Egs. is

E = (B"B)"}(B"B)=S"'H

() o (G
SU <¢0 Q;[)0 %’ v Q;[)0 Q;[)0 1!15

and vazl cipj is an eigenstate of A, with eigenvalue ¢, if c satisfies
Ec = cc i.e. Hc = ¢Sc

Note: Hj; evaluated on a finite MC sample is not symmetric, though the true Hj;,
and Hj; that minimizes sample energy, are symmetric. Nonsymmetric Hj; needed
for zero-variance property in limit that functions span an invariant subspace.



Linear method for nonlinear parameters
CJU, Toulouse, Filippi, Sorella, Hennig PRL (2007);
Toulouse, CJU, JCP (2007).

Make linear order Taylor expansion of wavefunction:

Nparm
V=0t Y opi i

i=1
1p = current wave function
1) = next wave function
; = derivative of 1y wrt it" parameter.
No unique way to obtain new parameters.
The simplest procedure: is pi'“" = p; + op;.
More complicated procedure: fit wave function form to the optimal linear
combination.
Simpler, yet efficient approach, freedom of norm to make linear
approximation better

¥(p,R) = N(p) ¢(p,R), N(po) =1
Yi(Po;R) = &i(po, R) + Ni(po, R)o(po, R)



Perturbation Theory in an arbitrary nonorthogonal
basis (Toulouse, CJU, JCP (2007)

Given a Hamiltonian A and an arbitrary nonorthogonal basis, {|W;)}, use
perturbation theory to get approximate eigenstates of H.
Define dual basis: (W;|W;) = §;; and zeroth order Hamiltonian, H©).

Nopt Nopt
W = S (SHwl,  HO =S B
j=0 i=0

First order perturbation correction is
Nopt

W;|H|Wo)
= — \|I -1 i.<-’7
Z‘ z_; )J Ei_EO

Want A and H© close — choose E; so H and H(©® have same diagonals
(WilH))

(Vi)
If the E; are evaluated without the Jastrow factor then this is the same as
the perturbative eff. fluct. pot. (EFP) method of Scemama and Filippi.

E;



Stabilization

If far from the minimum, or, Nyic, is small, then the Hessian, E;j, need
not be positive definite (whereas variance-minimization
Levenberg-Marquardt Ej is positive definite).

Even for positive definite E,-j, the new parameter values may make the
wave function worse if quadratic approximation is not good.

Determine eigenvalues, ¢, of E;; and add to it (max(0, —€min) + adiag)Z-
This shifts the eigenvalues by the added constant. As ag;. is increased,
the proposed parameter changes become smaller and rotate from the
Newtonian direction to the steepest descent direction, but in practice agiag
IS tiny.

The linear method and the perturbative method can be approximately
recast into the Newton method. Consequently we can use the same idea
for the linear and perturbative methods too.



Stabilization with Correlated Sampling

Each method has a parameter agi,, that automatically adjusts to make
the method totally stable:

1. Do a MC run to compute the gradient and the Hessian (or overlap
and Hamiltonian).

2. Using the above gradient and Hessian (or overlap and Hamiltonian),
use 3 different values of agi,e to predict 3 different sets of updated
parameters.

3. Do a short correlated sampling run for the 3 different wave functions
to compute the energy differences for the 3 wave functions more
accurately than the energies themselves.

4. Fit a parabola through the 3 energies to find the optimal agjag-

5. Use this optimal agjsg to predict a new wave function, using the
gradient and Hessian computed in step 1.

6. Loop back



Comparison of Newton, linear and perturbative

methods
Programming effort and cost per iteration:
1. Newton method requires v, i, 1, I:Izp, /:h/J,-.
2. Linear method requires ¥, 1;, I:Izp, I:Izp,-.

3. Perturbative method requires v, v, Hy, Hu;.
Perturbative method with approximate denominators requires v, ;.

Correct to which order:
1. Newton has correct 2nd order terms in E.
2. Linear does not have correct 2nd order terms in E but has all order
terms coming from linear terms in V.

Convergence with number of iterations:
1. Newton and linear methods converge in 1-5 iterations for all
parameters (CSF, orbital and Jastrow).
2. Perturbative method converges in 1-5 iterations for CSF and orbital
parameters but is very slow for Jastrow because eigenvalues of
Hessian for Jastrow span 9-12 orders of magnitude.



Things to note

Eigenvalues of E;j for Jastrow parameters span 11 orders of magnitude. So
steepest descent would be horribly slow to converge!

Linear and Newton methods can be used for all parameters, even basis-set
exponents.

Take Home Message: Any method that attempts to
minimize the energy, by minimizing the energy evaluated
on a set of MC points, will require a very large sample

and be highly inefficient.
Each of the 3 methods presented above avoids doing this.



Optimization of linear combination of energy and

Energy Minimum

variance

Variance Minimum

3.

. Can reduce the variance,

without sacrificing
appreciably the energy, by
minimizing a linear
combination, particularly
since the ratio of hard to
soft directions is 11 orders
of magnitude.

Easy to do — gradient and
Hessian of linear
combination are linear
combinations of the
gradient and Hessian.
Measure of efficiency of the
wave function is 02 Teoyy.



Eymc (Hartree)

Convergence of energy of NO,

NO,
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Convergence of energy fluctuations, o, of NO,
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Convergence of autocorrelation time, T, of NO,
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Eymc (Hartree)

Convergence of energy of decapentaene C;oH,

Decapentaene C;oH1
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Optimization of Jastrow of all-electron C,

-75.2

-75.3

-75.4

-75.5

Energy (Hartree)

-75.6

-75.7

Linear method ———
Perturbative method -~
Newton method (UF) :--x---=
Newton method (TU) ]

-75.8

Linear and Newton

Iterations
methods converge in 2-6 iterations, perturbative is slow!



Energy (Hartree)

Optimization of CSF coefs. of all-electron C,

-75.845
-75.846
-75.847
-75.848
-75.849

-75.85
-75.851
-75.852
-75.853
-75.854
-75.855

Linear method
Perturbative method -~
Newton method (UF) :--x----

Iterations

All 3 methods converge in 1-3 iteration!




Energy (Hartree)

Optimization of orbitals of all-electron C,

-75.764
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-75.768

-715.77
-75.772
-75.774
-75.776
-75.778

-75.78
-75.782
-75.784
-75.786

Linear method ————
Perturbative method :----x----
Newton method

AAAAAAAAA

Iterations
All 3 methods converge in 1 iteration!



Simultaneous optimization of Jastrow, CSFs and
orbitals of all-electron C, with linear method

Energy (Hartree)
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Convergence of energy of all-electron C, vs

virt
Norb
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Convergence of C, and S|2

Optl mlzatl on of
o0 VMC Jastrow

o--o0 VMC Jastrow, CSF's
Jastrow, CSF'’s, orbitals

Jastrow
Jastrow, CSF’'s
Jastrow, CSF’s, orbitals
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Experimental value \
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Well depth (eV)

Well-Depth of 1°-Row Diatomic Molecules
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Error in Well-Depth of 1°-Row Diatomic Molecules
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Error in Well-Depth of 1°-Row Diatomic Molecules
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Error in Well-Depth of 1°-Row Diatomic Molecules
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Error in Well-Depth of 1°-Row Diatomic Molecules
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Error in Well-Depth of 1°-Row Diatomic Molecules
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Error in Well-Depth of 1°-Row Diatomic Molecules
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Error in Well-Depth of 1°-Row Diatomic Molecules
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EFP method for ground and excited states
F. Schautz and C. Filippi, JCP 120, 10931 (2004)

e Excitations of ethene CoHs — Up to optimized parameters

o . Unoptimized Optimized
DMC excitation energies P ) —p

2B, —
118, -

YA __ | Energy

State  Unoptimized Optimized expt. (eV)
1'By, 8.45(2) 7.93(2) >7.7
21A; 7.96(2) 8.36(2) 829
21B1, 9.05(2) 9.37(2) 933



Wigner crystallization in quantum dots (Guclu)

NE19, S,=0.5, rs =45, Step O
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Wigner crystallization in quantum dots (Guclu)

NE19, S,=0.5, rg=45, Step 2
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Wigner crystallization in quantum dots (Guclu)

NE19, S,=0.5, rs =45, Step 5
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Wigner crystallization in quantum dots (Guclu)

NE19, S,=0.5, rg =45, Step 7




Wigner crystallization in quantum dots (Guclu)

N=19, S,=0.5, rg =45, Step 12
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Wigner crystallization in quantum dots (Guclu)

N=19, S,=0.5, rg =45, Step 17




Wigner crystallization in quantum dots (Guclu)

N=19, S,=0.5, r =45, Step 20
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Wigner crystallization in quantum dots (Guclu)

N=19, S,=0.5, rg =45, Step 22
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Wigner crystallization in quantum dots (Guclu)

N=19, S,=0.5, r =45, Step 25




Wigner crystallization in quantum dots (Guclu)

N=19, S,=0.5, r =45, Step 27




Wigner crystallization in quantum dots (Guclu)

NE19, S,=0.5, rs =45, Step O
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Optimization of the Diffusion Monte Carlo energy
(many-body nodes)
A linear combination of the DMC energy, VMC energy and variance can

be optimized using extensions of either the Newton or the linear methods
described above.

For the linear method, the ingredients are:

1. The calculation of excited state properties with quantum Monte Carlo
D.M. Ceperley and B. Bernu, J. Chem. Phys. 89, 6316 (1988).
Use basis projected a time T/2,

H; = <\U,'|e_’:IT/2F/e_’:IT/2|\Uj>:<\|J,"Flle_’:”—|\|fj>
Sj = (Wile TIw))
2. A nonsymmetric H;; ala Nightingale

3. Extension to nonlinear parameters as described above.

4. Integration over all projection times to a) improve statistics, b) mix in
VMC energy and c) simplify the method



Conclusions

. Three simple, robust and highly efficient methods for energy
optimization.

Newton and linear methods work for all the parameters.
Perturbation theory is least expensive method for optimizing a large
number of orbital parameters but slow for Jastrow.

. Methods have been used on large systems — 1000 electrons in solid
phases of Silicon.

. All 3 methods have been used to optimize hundreds of parameters
and perturbative method for a few thousand orbital parameters
(Sorella, Filippi).

. Optimization of the determinantal coefficients can be very important
for reducing fixed-node error of Epyic.

. Seemingly similar molecules, e.g. C, and Si, have fixed-node errors
for single-determinant wave functions that differ by a factor of 10.



