Lab: deformation of nanoscale materials

Alejandro Strachan School of Materials Engineering Purdue University strachan@purdue.edu

nanoMATERIALS simulations toolkit

In order to run the nanoMATERIALS simulations toolkit you need to register as a user of the nanoHUB: Go to <u>www.nanohub.org</u> and click on: \

A simple MD runs with nanoMATERIALS

Determine initial model for simulation

Select a model (Pt_nanowire)

Make a 5 5 5 supercell

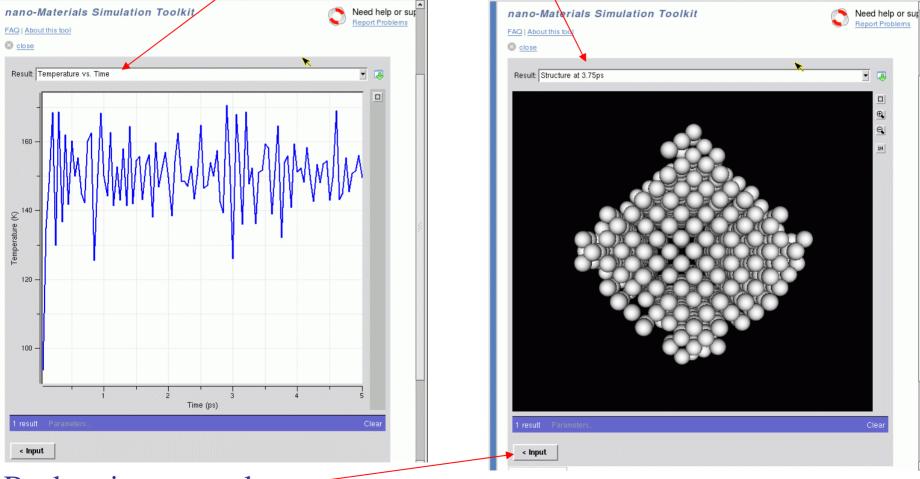
<u>E</u> dit <u>V</u> iew <u>G</u> o <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp		0
r 🛶 - 🛃 💿 🏠 🔄 https://www.nanohub.org/index.php?optio 🗂 🔽 💿 G	o <mark>C</mark> ,	
ed Hat, Inc. 📋 Red Hat Network 🗀 Support 🗀 Shop 🗀 Products 🗀 Training		
ano-Materials Simulation Toolkit	Need help or	sur
Q About this tool	Neport Problem	IS
close		
Input Model Energy Expression Driver Specification		
Geometry to simulate: Pt_unitcell.bgf	•	
aconicity to simulate. In Curnicentsgr		
Create Supercell		
a direction 5		
b direction: 5		
cettrection: 5		
cettrection 5		
Simulation cell parameters		
Simulation cell parameters		
Simulation cell parameters Modify simulation cell parameters: no	-	
Simulation cell parameters	v	
Simulation cell parameters Modify simulation cell parameters: no		
Simulation cell parameters Modify simulation cell parameters: Image: Cartesian	v	***
Simulation cell parameters Modify simulation cell parameters: Fixed atomic coordinates Cartesian Length atomic 5A		
Simulation cell parameters Modify simulation cell parameters: Fixed atomic coordinates Length a Length b 5A Length c 5A	· · · · · · · · · · · · · · · · · · ·	
Simulation cell parameters Modify simulation cell parameters: Fixed atomic coordinates Cartesian Length a 5A Length b 5A		
Simulation cell parameters Modify simulation cell parameters: Fixed atomic coordinates Length a Length b 5A Length c 5A		
Simulation cell parameters Modify simulation cell parameters: Fixed atomic coordinates Cartesian Length a 5A Length b 5A Length c 5A Translate atoms		

A simple MD runs with nanoMATERIALS

Energy expression

Select how the energy (and derived quantities) of the system will be determined

NANOHUB,ORG - Mozilla Firefox	/////////==×
File <u>E</u> dit <u>V</u> iew <u>G</u> o <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp	0
🖕 🗸 🛶 🛪 😂 🛞 🏠 https://www.nanohub.org/index.php?optio 🖻 🔽 🛽 Go 🗔	
🗋 Red Hat, Inc. 📋 Red Hat Network 📋 Support 🦳 Shop 🗀 Products 🗀 Training	
nano-Materials Simulation Toolkit	Need help or sur
FAQ About this tool	Report Problems
S close	
Input Model Energy Expression Driver Specification	
Energy Expression: Force Field	
Force Field	
Force Field: Default	
×	1


We will let the program pick the force field for us (a many body Sutton Chen force field)

A simple MD runs with nanoMATERIALS

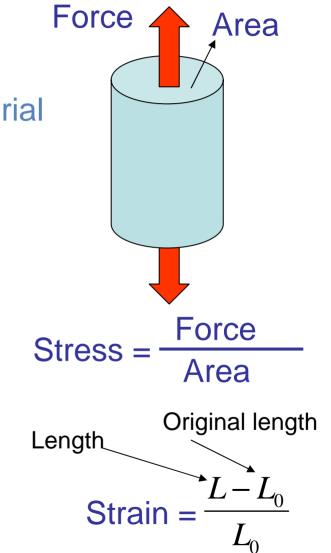
	NANOHUB,ORG - Mozilla Firefox	×
Driver options	<u>File E</u> dit <u>V</u> iew <u>G</u> o <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp	0
Driver options	🖕 🗣 🚽 🤔 🛞 😭 🔩 https://www.nanohub.org/index.php?optio 🖻 💙 🛇 G	
	🗋 Red Hat, Inc. 🗋 Red Hat Network 📮 Support 📮 Shop 📮 Products 📮 Training	
	nano-Materials Simulation Toolkit	Need help or sup
	FAQ About this tool	Seport Problems
What type of simulation?	S close	
what type of simulation:	Input Model Energy Expression Driver Specification	
	Driver: Molecular Dynamics	
Ensemble (NVE)	Molecular Dynamics parameters	
Time-step (5 fs)	Ensemble NVE	
Time-step (J 18)	Time step: 0.005ps	
	Number of steps: 1000	
	Temperature: 🛑 300K	
	Temperature increment (K/ps):	
	Strain per MD step	
	X direction: 0	
	Y direction: 0	
	Periodic tasks	
Write a frame in the trajectory	Write to energy file (steps): 10	
avery 250 MD stans	Write to trajectory (steps): 250	
every 250 MD steps		
	Update neighbor list (steps): 10	
Run simulation		
		Simulate >

nanoMATERIALS: simulation results

Select the output to visualize (plots or snapshots)

Back to input panels

Q: Why is the temperature about half of the input value?


Elements of Deformation & Failure

• Elastic deformation

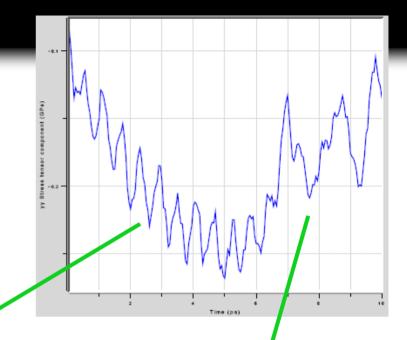
- Recoverable (if load is removed material goes back to original length)
- Strain is proportional to strain
- Plastic deformation
 - Permanent shape change even after load is deformed
 - Material changed atomic level rearrangement of neighbors

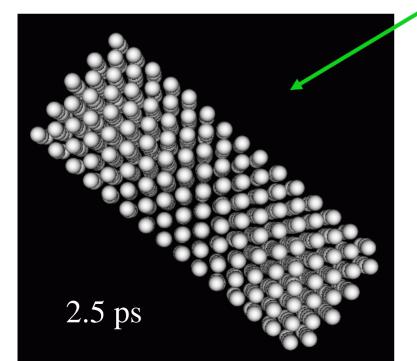
• Failure

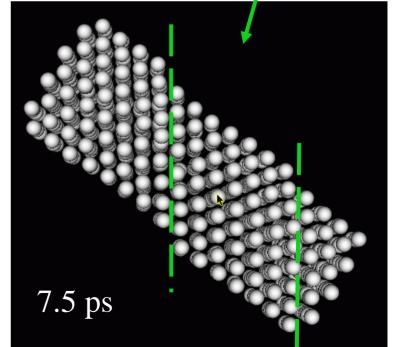
- Material separates in two
- It usually follows "necking"

Non-equilibrium MD: deforming a material

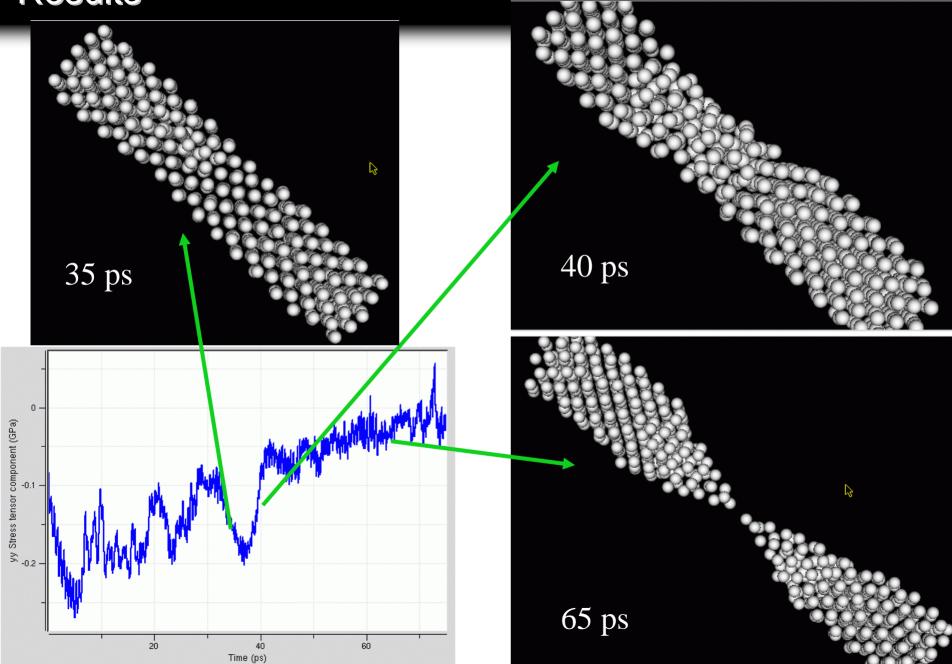
ano-Materials Simulation Toolkit	Need help
AQ About this tool	Seport Proble
close	•
Input Model Energy Expression Driver Specification	•
······································)
nput model: Pt_nanowire_r8_6.bgf	
Create Supercell	
a direction: 1	
b direction: 1	
c direction: 1	
	▶
Modify simulation cell parameters: 🔘 no	-
Fixed atomic coordinates: Cartesian	<u></u>
Length a: 5A	
Length b: 5A	
Length c: <mark>5A</mark>	

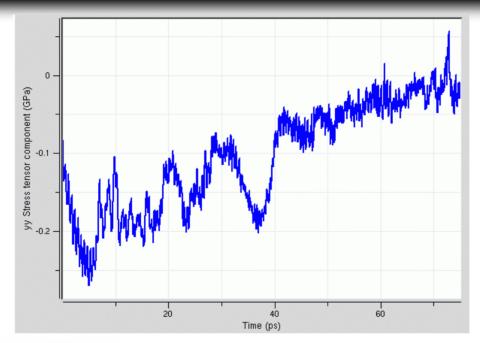

Set to NVEStrain along the axis of the wire: 0.00005 (per step)

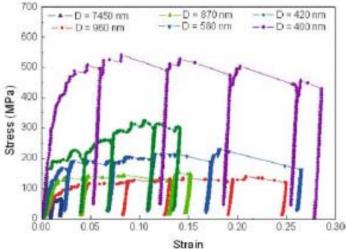

•Select model Pt_nanowire_r8_6 •NO SUPERCELL (1 1 1)


Driver: Molecular Dynamics	
Molecular Dynamics parame	ers
Ensemb	e: NVE
Time ste	p: 0.005ps
Number of step	s: 2000
	e: 🛑 300K
Temperature increment (K/p	
Strain per MD step	
X direction: 0	
Y direction: .00005	
Z direction: 0	
Periodic tasks	
Write to energy file (steps)	5
Write to trajectory (steps)	500

Results


Elastic region up to about 5 ps Plastic deformation leads to significant stress relaxation





Results

Results

Gold nano-rods Nix and collaborators, 2005

FIGURE 3 Stress-strain behavior of (001)-oriented pillars produced with a FIB: flow stresses increase significantly for pillars with the diameter of 500 nm or less

i hu

•What is the role of strain rate?

Half the strain per step and double the number of MD stepsCompare yield stress & maximum elongation

Repeat for nano-wires with different sizes
Wires with radius 10.8 and 13 Å
Compare yield stress and maximum elongation

Note: there is a maximum allocated time and size for the simulations