Equilibrium Statistical Mechanics



First Law

Conservation of energy: Heat plus work equals the change in
internal energy :
AE =q+w.
No perpetual motion of the first kind i.e. no work without consuming

fuel.

Conservation of energy: Differential form of the first law,

dE = dqg+ dw
$dE = 0

or Energy is a state function.



Second Law

Entropy is a state function: No perpetual motion of the 2nd
kind i.e. heat cannot be converted to work with 100% efficiency:.

Differential form:

dgyrey
dS = T

$dS = 0

where T is the temperature and g, is the reversible heat.



Thermodynamics

Combining the First and Second Law

dE = dq+ dw = dgye, + dw,, (E is a state function)
dEl = TdS — pdV + udN
where p is the pressure, V' is the volume, u is the chemical potential

and N is the particle number.

Since Energy is a state function, dFE is an exact differential. In
addition, S, p and N are variables of state. Therefore,

1 P 7
= —dF + =dV — =
dS Td +Td TdN

which implies, S(NVE), can be used to determine
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Third Law

In the derivation given about, it has implicitly been assumed that
the integrating factor is trivial. That is, as we decrease the tempera-
ture to zero, the entropy must evolve to trivial constant. Generally,
that constant is taken to be zero, and the limit of zero entropy at
T=0 is referred to as the Third Law.



Other Conditions : Conceptual Framework

Exact Differential:

dE = TdS — pdV + udN

First Derivative Relationships:

OF
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Thus, from derivities of the extensive variable, E, with respect to
three independent, extensive, variables (S,V,N), we obtain three cor-
responding dependent, intensive, thermodynamic variables T, p, .

Is it possible to write thermodynamics using combi-
nations of the extensive and intensive variables as the
independent parameters???



Legendre Transform

Any function, f(x), can be represented at any point, x, by its
derivative, and y intercept, b(x),

df (z)
dx

f@) = a2 b

It is therefore correct to write
df (x)

b(z) = flz) —a=~

because the intercept is determined by the function and its slope for

all z.

Therefore,

bly) = f(=(y)) —z(y)y
bly) = fly) —zy

where y = df (x)/dz is the independent variable.



Thermodynamics: Connections

Canonical Conditions (nVT): Review

Definition of A(NVT): Hemholz Free Energy
A=E-TS

Legendre Transform and Exact Differential:

dA = dE — SdT — TdS
dA = TdS — pdV + udN — SdT — TdS
dA = —SdT — pdV + udN

First Derivative Relationships:
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Thermodynamics: Connections

Isothermal-Isobaric Conditions (NPT):

Definition of G(NPT): Gibbs Free Energy
G=A+PV

Legendre Transform and Exact Differential:

dG = dA+ pdV + Vdp
dG = —SdT — pdV + pdN + pdV + Vdp
dG = —SdT + Vdp + udN

First Derivative Relationships:

0G
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G = uN

Where did the last equation come from?7?
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Interlude : Homogeneous Functions

If a function, f(x1 ...z ) is homogeneous function of degree one
in the variables x1 . . . 37 then scaling the z; by a constant will result
in the scaling of f by the same constant

fAzy... Azy) = Af(z1...20)

In addition, taking the A\ derivative of both sides

AM(zr...zy) = fAzr... Az y)
0(Az;) Of(Ax1Axy)

Of Ay ... A
flzy...zy) = ;xz S xal)\xi )

Of (21...
flzy...zy) = ;xl f(iﬂgxl Tar)

where the value A = 1 was inserted in the last step.
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Alternative Definitions

G(T,p,N) is extensive function. However, it depends on only one
extensive variable, N. Therefore, G must be a homogeneous function
of degree 1 in N. That is decreasing/increasing the amount of ma-
terial in a system by a scaling factor must increase the Free energy
by the same scaling factor.

Thus,

Tp

oG
¢ = N(8—N)

for a one component system.
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Thermodynamics: Connections

Grand Canonical Conditions (4xVT):

Definition of ¢:
op=A—uN

Legendre Transform and Exact Differential of ¢p(nPH):
dp = dA— pdN — Ndu
dp = —SdT — pdV + pdN — pdN — Ndp
dp = —=SdT — pdV — Ndu

First Derivative Relationships:

s--(3).
-3,
¥ = ()
¢ = —pV

The function ¢ is never used. It is rather always replaced by
((_pvﬂ‘
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Thermodynamics: Connections

Unphysical Conditions (uPT):

Systems cannot exist under pupT. Free energies must be extensive
functions. None of the variables, upT, are extensive. Therefore, any
function which depends on upT cannot be extensive. Mathemati-
cally, we cannot form a thermodynamic function of upT by Legendre
transform

Y = o+pV =—pV +pV =0
Y = G—uN =uN — uN = 0.

Physically, a system separated from a particle reservoir by a semiper-
miable membrane, connected to a heat bath with the walls of the
membrane moving in response to pressure variations of the system is
not at equilibrium. Any flucutation can give rise to explosive growth
or decay.
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Quandary

How does thermodynamics arise from the complex dynamical mo-
tions of atoms/molecules around us? Lets start by examining the
dynamical equations:
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Newton’s Laws

Newtons stated that for every reaction there is an equal and op-
posite reaction. For the most basic case, we write, the mass of a
particle times its acceleration equals the force

ma = F
mqg = F
which can be written in the form
: P
qQ = —
m
p=F

where ¢ is the particle position and p its momentum.
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Hamilton’s Equations

Hamilton’s equation are a generalization/reformulation of New-
ton’s equations. Briefly, the Hamiltonian, H(p,q) is defined such
that

. _ oH
i= %

., _ _VH
p = g

which yields
dH OH OH

at ~ Tog Py P
_ OHOH OHOH _
- Op Oq dq Op

and defines the Poisson Bracket
dA B OHOA OHOA

AH = 2 _
{4, H} dt Op g Oq Op
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Hamilton’s Equations.

For the most basic case,

yo

. p

q = —
9¢(q)

where p?/2m is the kinetic energy and ¢(q) is the potential energy.
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Liouville’s Theorem.

Hamilton’s equations can be written in the form
[ = &T,1)

where I' is an 2n-dimensional vector, I’ = (¢}, ..., p?), and &(T, t) is
an 2n-dimensional vector function of I' and ¢. The formal solution
can be written in terms of the initial conditions

Iy = It Iy, ..., I
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Liouville’s Theorem.

We can consider the solution as a transformation from the initial
coordinates at time, £y, to the coordinates at time, £ and determine
the evolution of the volume element

dl'y = J(['y;Ty)dly
where
o} ---T7")

- OThTY
J(Ft,ro) = detM
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Liouville’s Theorem.

The Jacobian is the determinant of a matrix M according to:

J(;To) = det(M) = 0™

An equation of motion for J(I'y; I'y) can be derived by

M M
Ty (M—ld—> :J_Z_Mz-;ld o
%]

dt dt

subject to the obvious initial condition J(0) = 1.

Here, the matrix elements of M~! and dM /dt are:

Mo aTy
Z ol
dM;; o}
dt 0Ol
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Liouville’s Theorem.

The equation of motion for J reduce to
dJ _ o O or
dt i O] oIy

8F6 oI 8F£€
ik O] OT'F O}

ory
=7 ik §TF oLk

or
-

= Jr(Ty)

The quantity
k(D,t) = Vp-T'=Vr-€&(T,1)

is known as the compressibility of the dynamical system.
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Liouville’s Theorem.

Using the definition of £(T', ¢)

2 2
(1) = -5 0°H iy 0°H

7 Opidg | T 0qiOp; !

and J(t) = 1.

Thus, Hamiltonian system preserve the phase space volume,
dl'y = dI'

which completes the proof Liouville’s theorem!!!
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Liouville Equation

It is now possible to consider a normalized distribution function,
f(T',t), describing an ensemble of systems evolving according to
Hamilton’s equations.

An equation of motion for the distribution function can be derived
by balancing the rate of change of the number of ensemble members
inside a volume, V', by the flux through the boundary surface

/D drf(T,t) = — [, dSc[n - &(T,t)] (T, 1)

/D(V)drafgy:_/l) = V()7 1)
=~ b Z@FtVf(Ft)

where phase space is assumed to be Euclidean or flat (it is).

In order for the result to hold for all possible Volumes, the local
results follows

MY Ly e nv.sry = 0
BT,
i
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Liouville Equation : Equilibrium solutions

We wish to examine equilibrium solutions, f(I') or df/dt = 0.
Clearly, any function consisting of conserved quantities of the dynam-
ics, f(H, Cy...Cy) will satisfy the Liouville Equation where dC},/dt =
0.

We wish to consider a distribution function that will allow us to
visit all points in phase space with equal a priori probability sub-
ject to the constraints embodied by the conserved quantity, H (and
possibly others). Clearly,

f(H,Cr...Cw) = Ko(H — E)TI8(C - o)

where K is a constant.
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Liouville Equation : Equilibrium solutions

Therefore, we can define the phase space volume

Q(NVE) = thN [dU6(H — E)
and static or phase space averages
Eq
A> = I'o(H — E)A(T
<A> = N O - BJAD

where h is Plank’s constant, only the Hamiltonian is assumed to be
conserved, and Fj is a constant.

The time average of a single trajectory will produce the phase
space average

<A> = 7llm —/0 dtA(Ty)

if and only if the system is ergodic.

We are now ready to connect to thermodynamics!!
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Gibbs Postulates

(1) Thermodynamic quantities can mapped into averages over all
possible microstates consistent with the few macrosopic parameters
required to specify the state of the system (here, NVE).

(2) We construct the averages using an “ensemble”. An ensemble is
a collection of systems identical on the macroscopic level but different
on the microscopic level.

(3) The ensemble members obey the principle of “equal a priori
probability”. That is, no one ensemble member is more important
or probably than another.
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Boltzmann Entropy and Partition Function

It is clear from the derivation presented above that the phase space
average is exactly equal to the desired ensemble average. That is all
phase points with energy, F are included with equal probability.

)

Consider the phase space volume, Q(NV E), the “number of states’
with energy E given physical volume, V and N particles. As the
phase space volume increases, obviously, the number of microstates
increases and the entropy should increase. This suggest that we
postulate that S(NV E) = F(Q(NVE)) where Q(NV E) is now re-
ferred to as the partion function and I is a monotonically increasing,
function.
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Connection to Thermodynamics

From thermodynamics, we know that
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From our postulates these quantities MUST arise from phase space
averages.

Therefore, S = F(£2) must be a constant times the logarithm,
S = klog(f), so that,

108
T OFE : )
1 Ey Oklogd(H — FE
T N'hNQ(NVE / dro(H = B) OF

= <T >

where k is Bolzmann’s constant and 7! is the inverse temperature
“estimator”.
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Ideal Gas

We next consider the ideal gas in three spatial dimensions, in the
large N limit
Fy

QINVE) = N'h?)N/dequ(S(ijp%/Qm—E)

1

_ 3N [V(Zﬂ'mE)?)/Q]N -

h3

V. (ArmEN\3/? 5)
NVE) = Nkl "Nk NY
S(NVE) OgNh3(3N> ]+2 +OWV')
Thus,
1 3k
T 2F
p _ Nk
T Vv
so that
g U
9
~ NET
P="vy

as expected!!
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The Thermodynamic Limit

Statistical mechanics is defined at finite N. How then does it pro-
duce the thermodynamics limit N — oo? In thinking about the en-
semble hypothesis consider that ensemble members can be thought of
as very small chunks of a giant system. Thus, by averaging quantities
over many small chunks, it should be possible to produce thermody-
namic quantities as ensemble averages with small N. That is, we
just need each chunk of the giant system to be large enough to be
statistically independent,

In addition, it can be shown that as N — oo statistical mechanics
predicts (properly) that average quantities such pressure approach
their average, < p >= p.s+, and all thermodynamic quantities are
the same in all ensembles.
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NVT Partition Function

Canonical ensemble: NVT

. Imagine a system surrounded by a thermal reservoir with:
(H=Hr+H),{H,Hi} =0

2. The probability of having energy F; in system I and the Ejy in
IT must be P[P][ = P[,H. Hence,

Q(NVB) = [dE; [ dEP(Er; B)Q(NVE)P(Err; 8)Qur(NV Eqp)
€ €
— [dE [*} deP <E+ §;5) P(E _ 5;5)
€ €
2 (NV(B+3)) 0 (VV (B - 3))
3. We also know that
QNVB) = [dEP(E;B)Qu(NVE)
which implies
€ €
P(E;B) = P(E+ §;ﬂ> P(E— §;ﬂ>
P(E; ) = exp(—BE)
where 0 = G(T).
4. Combining results we obtain

Q(NVB) = [dI [ dEexp(—BE)Q(NVE)
= %/df‘ exp[—0H (T)]
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Statistical Mechanics Review

Thermodynamic Connection: NVT

1. Define the average energy:

~ Olog[Q(V )] K exp[-BH(V,T)]

og  — JHOD 00 ]: )
2. Define the average Pressure:
dloglQ(VA)] Kexp[-BH(V,T)]|
VL farpqv.r) (K2 SR o

3. Perform a Legendre Transformation: Assume averages are equiv-
alent to thermodynamic quantities

d(BE +1og|Q(VP)]) = BdE + BPdV
_ LlupL?
ds = dE + -V

1
P =T
S = E/T—A/T

A = —kTlog[Q(VT).

4. Here, the universal constant k is the familiar Boltzmann’s con-
stant.
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NVT Partition Function : The free particle

The canonical partition function for the free particle is

QUNVT) = s [ AT expl—0 5 pt /2]
_ VN[ m ]3N/2

N! [27h°3

Using our standard relationships:

Olog Q(NVT) NEkT

p =5 %
_OlogQ(NVT)  3NKT

0B 2
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NPT Partition Function

Using the similar arguments to those used to construct the canon-
ical and microcanonical partition functions, it can be shown that

dv e 5Pextv/ de /D I' e_ﬂH(par)

—BPextV E
th/o dV e Plext /dEe b
x [ d"p /D(V) d"r 6(H(p,r) — E)
= [T dV e PV [dEe PPQ(NVE)
= [T dV e PV Q(NVT)

A(NPT) = h I

is the isothermal-isobaric partition function where C'y a combina-
torial factor, Q(NVT) is the canonical partition function and the
Q(NV E) is the microcanonical partition function.

The connection to thermodynamics is, also, standard,

G = —kTlog A(NPT)
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NPT Partition Function : The free particle

The partition function is

1 2
_ o0 —BPV [ 3N N.. —B,p2/2m
A(NPT) = W/O dV e /d P /D(V) d're kpk/
o 13M/2 e\
_ o0 —pPV
= |2an78) /0 dV e N
_ m ‘3N/2wp]—(N+1)
2mh° 3
This result yields
O0log A(NPT) (N +1)kT
v = e (PG < B
O0log A(NPT) [5]\7 ]
Hepiha = — = |— + 1| KT
N e R
which in the large N limit yields
PV = ng
SNET
Henthal - T
Note, that
P
-1 -1
V=V = N

because in small systems [(V)]~! # (V~1)!

35



Thermodynamic Estimators : More detail!

In the isothermal-isobaric ensemble, the average Volume can be

written as
oG
W) = (8P t>TN
Cn % —BPutV [ N N.. .—BH(pr)
- thA(NPT)/O AV e[ AT oy e e ROV

— <V>extended phase space
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Thermodynamic Estimators

The average Enthapy (Heptha = E + PeytV),

G = A"'PextV:E_TS—"PextV:Henthal_TS

G+TS

oG
= 6157
OkT log A(N PT)

oT
= G+ kTlog A(NPT) + kT?

B O0log A(NPT)
= G-Gq 95

~ Olog A(NPT)
0p

H enthal

= G+T

O0log A(NPT)
oT

can be written as

C
<H enthal > — al

> d —BPextV
hINA(NPT) b dVe
X / de /D(V) dNr e_ﬂH(p’r) [H(p, I') + Pemtv]

- <H >phase space + <P extv>extended phase space
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Thermodynamic Estimators

Consider,
dlog Q(NVT)> B KT oo PPV 0log Q(NV'T)

<_kT oV - _A(NPT)/O dv'e QINVI) =5y
J— - BPextV—
~ ~ANPT |7 ave e

kT oo B

-~ ~AWPT) /0 dV e PPV Q(NVT)(—BPxt)
— Pe:ct

Inserting the definition of Q(NVT) yields

8logQ(NVT)> Cn PeutV
kT = dV e PFext
< g oV thA(NPT fodve
- N —ﬂH(p,r)
X V/ d’p /D(V) re

Pert = <Hﬂt>extended phase space
where

1 [M p? XN 0¢(r, V)

P, = — =t : dV
CT W | Em Ty
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Thermodynamic Estimators

Finally,

0log Q(NVT)>

<_kTV 1%

= P.(V)—kT

using similar arguments to those employed above.

Thus, for the ideal gas,

C PextV N —0BH (p,r
<V>:thA(NPT/0 dv Ve eV [ d¥p [ d¥r e PP
dVVN+1 — B PextV
f{fo dVVNe=BPextV
(N + 1)kT

P ext

<Pmtv> — Pe:vt<V> — kT
— (N + 1)kT — kT = NkT
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NPT/NVT : Thermodynamic Limit

Note, while the thermodynamics independent variables are changed
via Legendre Transform, partition functions are changed via Laplace
Transforms. In the thermodynamics limit, only the maximum term
contributes to the integrals, and the two transformations become
manifestly identical £ — Eiermo, V. = Vihermo a0d A = Aipermo-

Thus, in the thermodynamic limit,

A(NPT) = e PleVe=PEQINVE)
G =PV+E-TS=H-TS

and

A(NPT) = e PPVQ(NVT)
G = PV+A

Similarly, for the canonical ensemble

Q(INVT) = e PPQ(NVE)
A=FE-TS=
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Generalized NPT ensemble

Virial Theorems

1. The canonical partition function:

Q(h) o [drexp[—f4(r,h)]

r = hs
Q(h) /dSVN exp [—F¢(hs, h)]

2. Tensorial Virial Theorem:

(a) Note the relation:

Ologl@Q(V)] _ , ,0log|Q(V)] (V) L
v Ty av) 2 leles

(KT 0loglQ(V)]

N (W) azﬁ Ohos o
1

= aTl"Pmt

(b) Understand:
kT d 0logl@Q(h
<<Rnt>aﬂ T Pe$t5aﬁ> — < V 1§1 aE'Lal( >] hﬂl - Pextdaﬂ> =0



Generalized NPT Ensemble

Pressure

1. Internal Pressure Tensor, (Pint)as:

(Pudas) = [ dhexp 3PV ]VQ(R)
kT d Olog|Q(h)]
8 [V z§1 Oha hﬁl]
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