Equations of Motion and Numerical
Integration



Integrators

We want to solve, numerically Hamilton’s Equations
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Liouville Operator Formalism and Numerical
Integrators

The Problem

Develop a formalism that can be used to construct algorithms that
in a consistent and simple way.

The algorithms should be reversible and exact to some order in the
time step.

The algorithms should reflect as many analytical properties of the
true dynamics as possible. In particular, conserved quantities should
be generated.



Symplectic Property

Hamiltonian flows possess the symplectic property,
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which implies phase space volume preservation, det J(¢) = 1.



Symplectic Property

In addition, the converse is true. The symplectic property implies
the existence of a Hamiltonian!! If the dynamics arises from a Hamil-
tonian, then, of course, the Hamiltonian is conserved.

Lets design, reversible symplectic algorithms!!



The Formalism

Assume a set of coupled first order differential equations with
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The time dependence of any function of the x and p can be written

as
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T'(t) = e™r(0)
where L is called the Liouville operator.
If ' = {x,p} then the state of the system at time ¢ is written in

very nice form. Can this formalism be used to generate numerical
solutions?



The Trotter Formula

The analogy that the Liouville operator formalism gives with quan-
tum mechanics can be exploited and a short time approximation to
the time evolution operator constructed
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The Trotter-Suzuki Formula

The state of the system at time, ¢ is thus generated by P succesive
applications of the short time approximation to the initial state I'(0)
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While the Trotter-Suzuki formula is not exact, it has GREAT prop-
erties.



Reversiblity

First, as exp(¢L;At) exp(—iL;At) = 1 the unitary property of the
time evolution operator is exactly preserved.

All algorithms generated by this formalism will be time reversible.



Symplectic Property

The Trotter-Suzuki approach allows an error analysis to be performed
and error bounds to be constructed. Applying the BCH formula to
the integrator yields,
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because the commutator of any two Liouville operators yields a third,

~

i® = Gw.y,

and, for example,

1
C(l) = ﬁ[lzl + 2L2, [Ll, LQ]]

i)

That is, Lioville operators are composed of first derivities i L = G(x)-
V., and communators of two operators of this form, yield a third of
this form.
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Symplectic Property

Therefore, the integator generates the solution to the continuous time
equations of motion,

Ll (0) = i Lx(t)
x = 3 GPx)A

at intervals, nAt, where n is an integer and G(¥(x) = G(x). Thus,
the dynamics is correct up to the desired order!!
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Symplectic Property

The above analysis allows the choice of decomposition, L = L + Ly
to be connected directly to properties of the “flow” generated by the
integrator.

For example, if the original equations are Hamiltonian, and ¢Lq, ¢ Lo
are each derivable from Hamiltonians, h1(p, q)+ha(p,q) = H(p, q),
then each G®)(p, q) is Hamiltonian, G®(p, q) = VrH®(p, q).

That is, the commutator of two Hamiltonian Liouville operators
yields a third, whose associated Hamiltonian is given by the Pois-
son bracket, hs = {h1, ho},

Oha Ohy  Ohg Oy

th, ha} = dp g  dq Op

Note, the rich analogies with quantum mechanics!
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Symplectic Property

Therefore one can define a Hamiltonian
H =Yy HYx)At* = H + O(A?)
k

which generates the “dynamics” of the interator and is exactly pre-
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Symplectic Property

First, since H is conserved, AH = H — H is bounded. There is no
secular growth in the total energy.

Second, since H is conserved, closed orbits can exist. They are not
the orbits of H but deviate by at most O(At?).

Of course, At must be within the radius of convergence of the series
defining H.
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Simple Algorithms

Consider the most basic Trotter-Suzuki break up possible

. F(x)0
ZL1 = Tg av
ZL2 = Va—x

where the momenta has been replaced by the more traditional ve-
locity due to the extreme simplicity of the Hamiltonian system in
question.m

Here, hy = ¢(x) and hy = p?/2m.
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Simple Algorithms : Tools

In order to evaluate the action of the approximate evolution operator
on I' we need to apply the translation operator,

d B a* d* f(z)
expjag | F@) =
= f(z+a)
and
d
exp la— 9y) = 9(y)

if y is independent of x.
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Simple Algorithms : Evaluation

Thus, the action of this short time evolution operator on x and v
gives

iL1At .
z(At) = elTelhAtzL’(O)
iL1At

= e 2 [z(0) + v(0)At]
F(z(0))At?
2m

= z(0) + v(0)t +

and

v(At) = v(0) + A [F(z(0)) + F(x(At))]

2m

where the identity exp(c2)f(z) = f(z + c) is used.
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Simple Algorithms : Evaluation

This is famous velocity Verlet algorithm!!!!

F(2(0)) A2

z(At) = x(0) +v(0)t + o

v(At) = v(0)+ ot [F(2(0)) + F(z(At))]

2m
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Simple Algorithms

Velocity Verlet is Symplectic! This can be seen by generating the
Jacobian analytically and testing it (YUCH!!) or by realizing that
il is derivable from h; = ¢(x) and iLs is derivable from hy =
p*/2m. Thus, Velocity Verlet is derivable from a Hamiltonian.

For example, velocity Verlet integration of H = p?/2m + mw?z?/2
conserves

: Pl ()]

DO —
DO —

mw?q? ll — (wTAtﬂ cos—] (1 _ w22At2>

H(p,q; At) = +

2m 2 lwAL|

The integrator has closed orbits for wAt < 2 and yields a good ap-
proximation to the true trajectories if wAt << 2 (i.e. limyat—o H(p, q; At) =

H(p,q)).

In limy,as—o, the shadow conserved quantity diverges.. Closed or-
bits are replaced by hyperbolic, unbound orbits and the integrator
becomes unstable. These limitations haunt even the more complex
integrators described next.
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Multiple Time Step Integration

Velocities Verlet works GREAT but ...

1) Fast motion caused by strong short range forces: Vibrations in
molecules, Path Integrals limit the time step.

2) Long range forces: Molecular and atomic fluids, clusters, have long
range forces that are computational expensive to calculate.

3) Combinations of the above are typically present.

How can we use the power of our approach to midigate these diffi-
culties?

20



Multiple Time Step Integration

Reference System Propagator Algorithm: RESPA

Here we take the break up

o Fele)o 0
the = = 78 TVas
iL — AF(:U)Q

m  Ov

where
AF() = F(@) = Fros(a)

which is based on the decomposition,

p2
hl — %+¢ref(x>

hy = qb(CE) - qbref(x)

Applying the Trotter-Suzuki Formula yields

L1 At

z(At) = eiLQMeZ’“%(O)
= e 7 zy06(AL, 2(0), v(0))
= Tyef (At, z(0),v(0) + QA—ﬂiAF[m(O)D
and
V(AL) = Vyes (At,w(O),v(O)JrZA—WiAF[ﬂC(O)])
N

2m
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This looks painful AND we need the analytical solution?
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RESPA

How can the reference system position and velocities be generated?

, m QL ct T
eZLTefAt — e ZLef ]
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el = o2 eMe ] + O(Atst?)

with Velocity Verlet!!

That is, the inner propagator is further decomposed into

2
p
o=

2m

h,2 - ¢ref<37>
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RESPA

Therefore the approximation looks like

iLQAt
= e 2

ZI/approa: At e 2 e

iLySt s L0 " LAt
€ 27e 2 e 2

Note, that iLy and ¢Lj commute and can be combined on the 1st
and nth step of the procedure!
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RESPA

Specific : dti=dt/n : dt = n*dti

v =v + (F_del*dti*n/2m)
loop over RESPA time steps
v =v + (F_ref*dti/2m)
X = X + v¥dti
get F _ref()
v =v + (F_ref*dti/2m)
end loop over RESPA time steps
get_F _del()
v =v + (F_del*dti*n/2m)
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RESPA

General :using commutation relation

loop over RESPA time steps
v =v + (F_use*dti/2m)
X = X + v¥dti
get_correct_F(irespa,w)
v =v + (F_use*dt/2m)
end loop over RESPA time steps

get_correct_F(irespa,w) where w = n

F_use=0
add_F ref to F_use(1)
if(irespa==n)add_F _del to_F _use(w)
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Comparison of Algorithms

The energy conservation as a function of time step will be used to
compare the algorithms

E(mAt) — E(0)

AE(At) = 70 |

N
> |
m=1

You can design other measures but I like this one.
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Applications

A) The Lennard Jones Fluid: A study of long range forces

N Fref
iL, = > Fi () Ve +v-V,
i=1 m
N AF;
i, = » 2P0 g
=1 m

where
f N
F;7 (r) = X £;(r)S(rij, re, A)
1=1

and S(r,r., A\) is a distance dependent switching function that sets
the reference force to zero at r.. The parameter A is the length scale
of the switch.
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Applications

B) An oscillator embedded in a L.J. Fluid: A study of separation of
time scales.

N
iLQ = ; V- VTZ. + fl(r12> ) vvl + f2(r12) ) vV2

N AF;
i, = 3 8B g

=1 m

The equation of motion for particles 1 and 2

ri(At) = i, (At,ri(O),v(())+2A—T£AF[I“(0>])

V(At) = Vies (At, r(0),v(0) + QA—T;AF[:U(O)])

the rest are integrated with velocity Verlet.
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Limitation of RESPA

e The RESPA shadow conserved quantity possesses instablities at
Wma At = m. Thus the largest time step is controlled by the
highest frequency in the problem.

e Long range/short range decompositions for water don’t yield
enormous increases in computational efficiency.

e Other than NAMD, few simulation codes use it although you
can get 2.5x increases in efficiency.
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Extended System Methods

Outline:

1. Nosé-Hoover canonical dynamics: Potential difficulties, Numer-
ical studies.

2. Nosé-Hoover chain canonical dynamics: Potential improvements,
Numerical studies.

3. Andersen-Hoover isothermal-isobaric dynamics: Equations of mo-
tion, Virial theorems, Numerical studies.

4. Parinello-Rahman-Hoover isothermal-isobaric dynamics: Virial
theorems, Equations of motion, Numerical studies.
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Extended System Methods

Nosé-Hoover dynamics: Theory

1. Nosé-Hoover equations of motion:

. Pi
r, = —
m;
. P
P = Fz'_épi
: 23
E=7
Q@
N p2
; P;
= =L — N:kT

where Ny is the number of degrees of freedom and ¢ is the “ther-
mostat”

2. Conserved Quantity:

N
H = % DL PE L0V 4 NRTE

1= 12m2 2Q
dH'’ oOH’ oOH' .
dt Zgl [Vp pi +V, r] T 3p§p5+ o€ §
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Extended System Methods

Nosé-Hoover dynamics: Theory

3. Dynamical Jacobian and phase space metric tensor

S = 0 e 5 (%ee )
J(t) = exp[Ny&(t) — Np£(0)]
dly = J(t)dT,
dl'y = eXp[N E(t) — Ns£(0)]dTy
exp[N£(0)]dly = exp[N£(t)]dl

V9udlo = f (Al
VG = exp[Ny{]

4. Phase space volume: Using the Generalize Liouville theorm
= [drygs (cur) = )
Q = [dp; [d¢ [dr [dpexp[N£J6(H' — E)

E
exp |7 H"
Q = NLT]/dp [ dr [ dpexp kT]
"o N pz pf
= ElZmZ-—i_ZQJrgb( V)

The canonical phase space volume is correctly generated (within
a constant).
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Extended System Methods

Nosé-Hoover dynamics: Free particle

1. Explore behavior on 1D free particle.
PP

&= PP
2
. pe . P
_ P _ Pt
o - p pf kT
Tog RIS
J=€Xp[£]

Note, p(t) = p(0) exp[£(t)] or & = log[p/po].

2. This constraint must be taken into account:
Q = [dpe [dE [ dpexpl€]6(H' (p,pe, &) — E)6(E — log[p/po))
Q = [dpe[dp (pﬁ) §(H"(p,pe) — E)
p 2

H" = p + 28 kT log[p/po]

T2

and the canonical ensemble is not generated.
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Extended System Methods

Nosé-Hoover dynamics: Numerical Studies

1. Study the free particle numerically. How bad is it?
2. Look at the 1D harmonic oscillator numerically: ¢(z) = mw?z?/2.
3. Potential problems:

(a) Few extended system degrees of freedom.
(b) Free particle suggests & can be slaved to p.
(c) Does “Q” matter?
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Extended System Methods

Nosé-Hoover dynamics: Improvements

1. Introduce more extended system degrees of freedom.
2. Shake up & which can get “locked”.

3. Well, p¢ is a momentum, too. Why not thermostat p¢? Why not
thermostat p¢’s thermostat ... Hey, lets make a chain!!!
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Extended System Methods

Nosé-Hoover chain dynamics: Derivation

1. Equations of motion:

: Pi
r, = —
my;
. p
pPi = _Fi_pi&
: Pg¢;
& = =
Q
N p; Pe
e, = | 2L — NT| — pe, 22
Pg =im, f ] p§1Q2
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Y Q) Qi
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2. Conversed quantity:

2 2

M
+ NETE + kT + o(r,V
Zom: T aq, TVRTG T X TG ¢(r,V)
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Extended System Methods

Nosé-Hoover chain dynamics: Derivation

3. Dynamical Jacobian:

aJt) _ _ M (dg dpﬁk) 3 3 3
. I) Lzzjz (d&: i dpg, " 51 (Vi + V.51

J(t) = exp[N(&i(t) — &i(0)) + é §i(t) — &k (0)]
Vi = exp[Nf§1+é§k]

4. Phase Space volume:

Q = [dpe .. .pey [dé...dEy [dr [dp
X exp[ N + k%i SI5(H — E)

Hl/
Q) /dpgl...ng/dr/dpeXp _kT]
N p?2 M p?
H' = & Py o Mg v)

i=12m; =1 2Q

The canonical phase space volume is correctly generated (within
a constant).
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Extended System Methods

Nosé-Hoover chain dynamics:

1. Formal Problems with the Free particle overcome.
2. Numerical examples: Free particle and Harmonic oscillator

3. Multidimensional problems: Need one Nosé-Hoover chain per de-
gree of freedom to ensure egodicity (smooth energy landscape).
The derivation for multiple thermostats follows straightforwardly.
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Extended System Methods : Numerical
Integration

The equations of motion are not Hamiltonian. Althought new theo-
retical work has demonstracted that a Generalized Symplectic Prop-
erty can be formulated, a generalized decomposition theorem has
not yet been developed to ensure that a shadow conserved quantity
is generated by a properly developed integetor.

The best that one can presently do is to ensure that the metric
factor,,/g, the square root of the determinent of the metric tensor,
g, is properly generated by the integator.
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Extended System Methods : Numerical
Integration

An effective decomposition for the NHC method is given in Mol.
Phys. (1995). Briefly, one takes the Hamiltonian part of the Liou-
ville operator and sandwhiches it between the non-Hamiltonian NHC
evolution. The decomposition of the NHC evolution is designed to
preserve the metric factor, ,/g.

oL = Z'LHa,miltom'an + iLNHC’

loop over RESPA time steps
integrate NHC(dti,v,xnhc,vnhc);
v =v + (F_use*dti/2m)
X = x + v*dti
get_correct_F(irespa,w)
v =v + (F_use*dt/2m)
integrate NHC(dti,v,xnhc,vnhc)
end loop over RESPA time steps

Cool new extended system method that avoids resonance artifacts
and allows 100fs time steps to be used: Phys. Rev. Lett. (2004).
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Extended System Methods : Useful
Appendices

Information about Constant Temperature and Constant PRessure
methods is provided.

42



Extended System Methods : Appendix A

Nosé-Hoover chain dynamics: Masses

1. Find second order equations for fj

G (2 [N Pi & [N p?
Fri {Q1 [ZFE ‘QlLEW‘Nf’“T”
—51{§p?—52+5253+ [@152—m}
=11 2 QQ !
d*¢ 26 [N p} & 1, ;
"o BEE ] S o]

=11, QQ

1

Q2

a3 {25'5;21 -G+ Qo - 7] - s
Ci;ij = {gjj Q)28 5 — KT| - 5571 Q& — kT]}
~- & {25? ‘ij ==t Q;l Q€2 — kT - éj+1§'j+2}
d2%1 N {25]\]\;12 (@ur-a8hy—s —KT| - cj\fl Q2o — kT]}
— {25'%;??4—2 — &+ QLM Q1) - kT]}
d;fi” = {QgMMl Qui—2Eir_s — kT]} —&u {2&2‘4 éﬂCle} (1)
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Extended System Methods : Appendix A

Nosé-Hoover chain dynamics: Masses

2. Solve each equation individually by taking the phase space av-
erage of all other variables

d*, . [2NkT 2kT] Qi
@~ Lo ool
¢ ¢ kT 2kT] Qj_1£.3
dt?2 1Q; Qi Qjs1”
426y, . [2kT
i M [Q—M]

3. Take Q1 = NkT7? and Q; = kT'T* to achieve resonance where
T is the time scale on which you desire the “thermostatting” to
oCCur.
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Extended System Methods : Appendix B

Isotropic Constant Pressure: Virial Theorems

1. Pressure virial theorem: External and Internal Pressure balance.

1
<]Dmt — Pext> — K/dve_ﬁpewtv /dp/dre_BH(p’r) (Bnt _ Pea:t)

D(V)

<P. o > _ fdve—ﬁpextVQ(V) [kTaloga[g(V)] _ Pea:t] .
mt ext dee‘ﬁPethQ(V)
<Pmt> — Pext

2. Work Virial Theorem: External and Internal Work differ by &7,
the work done by the piston.

fdve—ﬁpemtV VIV kTalog[Q(V)] — P,
(Pt — Po)V) = QV (KT8 Yo kT

J dV e=PPeatVQ(V)
(P V') + kT = P (V)
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Extended System Methods: Appendix B

Isotropic Constant Pressure: Internal Pressure

1. The canonical partition function:

Q(V) o [drexp[—pB¢(r,V)]
r = Vg
QV) o [dsVN exp |[—Bo(VYs,V)]

2. The internal Pressure:

_ 1 01og[Q(N, V)]

[ dse B0 SVIVN (L) INET — V4000
J dsVNe=Bo(V1/4sV)
[ dre= 89T (L) [ANET + Sy v - By — (dV) 24850
[ dre—589(x,V)

Jdp [dre” ﬁH(rpV)( ) [Zk + Xy - Fyp — (dV)a¢éVV

fdrfdpe BH(I'PV)

- (@) gm0

K Mk
P = (%) [z—+zr Py — (dV)ad’g;’/V)]

k Mk
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Extended System Methods: Appendix B

Andersen-Hoover NPT dynamics: Derivation

1. Equations of motion: Volume is a dynamical variable!!!
Pi Pe

f‘i:E‘FWrz’
pi:Fz’_(l‘}‘]s—f)S;pi_gpi
AV

Vo= sz |

o = V(P = P+ 5 B - ¥
= Pe

Ny
pg=i§1%+%—(Nf+1)kT

2. Conserved Quantity:

/ N pZZ p? pfc
H = El 5+ S + 20 + ¢(r, V) + (N + 1)KTE + PeytV

dH’ N OH' oH' . O0H'
— S VH -p+VH -1, ' "
dt El[ PV r]+ap€p§+ 3§§+3p€p
OH' .
+ yv=o,

oV
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Extended System Methods: Appendix B

Andersen-Hoover NPT dynamics: Derivation

3. Dynamical Jacobian:

dJ(t) d¢  dpe  dV _ dp. . .
a ~ Ottt TR (V,Di+ V)

J = exp[(Ny +1)¢].

4. Phase space volume:

A = [dpe [dp [dgdV [ dp [ drexp[(Ny+1)¢J6(H' — E)

D(V)

e Lf;] H'
A = N, 1) /dp /dpg/dV/Dgp/drexp kT]
H' %;;f et T 0le,V) 4 PV

The isothermal-isobaric phase space volume is correctly gener-
ated (within a constant).
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Extended System Methods: Appendix B

Andersen-Hoover NPT dynamics: Virial Theorems

1. Condition for equilibrium: The phase space average of the time
derivitive of any pure function of the phase space variables must
vanish,

(ALY e, v =0

2. Apply the Work Virial Theorm:

<p6> — <dv<Bnt - Pea:t) + Ff Zom, Q
(Be) = A{kT +(V(Pint — Pewt))} = 0

d N p? ps>
€
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Extended System Methods: Appendix B

Andersen-Hoover NPT dynamics: Masses

1. For optimal performance, the variable p. should be thermostat-
ted independently, assigned its own Nosé-Hoover chain.

2. Mass for € = (1/d)log(V): W = (Ny + d)kT7?
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Extended System Methods: Appendix B

Andersen-Hoover NPT dynamics: Numerical Examples

1. Free particle: ¢(r,V) =0

2. Cosine potential:

mw*V? 2rx
oz, V) = = [1 — cos (7)

withm=1,w=1,Q=1,Qw =9, W =18, kT =1,P,,; =1

o1



