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Part 2: Basics of Cluster Expansions and
Getting a Optimal Cluster Expansion

D.D. Johnson, Materials Science & Engineering
Materials Computation Center,  Summer School  June 20, 2005

Present:  Using DFT Structural Energies to get a Cluster Expansion

Goal: Develop ideas for Cluster Expansions that are optimal.

These will be develop/enhanced in remaining lectures.

    

€ 

Eσ = ViΦi
σ

i∑

Cluster correlationsEffective Interactions

    

€ 

EDFT
σ CE

 →   Vi
Monte Carlo

 →      Thermodynamics

1st n.n.

2nd n.n.

• Cluster Expansions: What clusters to use? What is optimal?
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What is the “coarse-graining” Cluster Expansion concept?

      

€ 

E(σ1,Kσn ) = J0 +
1
1!

Jiσi +
{i }
∑

1
2!

Jijσiσ j +
{ij }
∑

1
3!

Jijkσiσ jσk +
{ijk}
∑ L

Succinctly written as:  

      

€ 

E(σ1,Kσn ) = JαΦ
α

α
∑

      

€ 

Φn({σ}) =σ1LσnWith structural “correlation fcts”:  

Coarse-graining of
the electronic
degrees of freedom.
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Some “older” References on Cluster Expansion

      

€ 

E(V;σ1,Kσn ) = Jα (V )Φα

α
∑

Ground-breaking paper: For an infinite cluster
expansion, using a Chebyshev basis, the CE was
shown to be complete, in mathematical sense.

Johnson, "Phase stability in Alloys from Density-Functional Methods", in
Encyclopedia of Materials: Science & Technology (Pergamon, NY, 2002)

Sanchez, Duscatelle and Gratias, “General Cluster Decriptions of
Multicomponent Systems,” 128 A, 334 (1984).

D. de Fontaine, Solid State Phys. 47, 33 (1994)

Connolly, Williams, Phys. Rev. B 27, 5169 (1983)

D. de Fontaine, “Configurational Thermodynamics
of Solid Solutions,” Solid State Phys. 34 (1979)

Related Effective Interactions for Thermodynamics

First DFT-derived effective Interactions

BUT …  Cluster Expansion must be truncated for any utility - no longer complete.

Alex  Zunger, in Statics and Dynamics of Alloy Phase Transformations,
NATO ASI Series, ed. P.E.A. Turchi and A. Gonis, pg. 361 (1994 ).

Somewhat of a tutorial in nature but somewhat heavy-
handed argument for including explicitly the strain

Sanchez  and de Fontaine, in Structures and Bonding in Crystals, ed.
by O’Keefe and Navrotsky (Academic Press, NY, 1981) Vol.  2, 117

Many-body Interactions and effective Interactions

Terakura, et al., Phys. Rev. B 35, 2169 (1987);
J. Phys: CM 5, 1473 (1993)

First attempt at DFT-CE with size-mismatch/vibrations included

Topical review: Muller, “Bulk and surface ordering phenomena in binary
metal alloys,” J. Phys.: Condens. Matter 15, R1429–R1500 (2003)

Various reviews and commentaries: see references therein

Van der Walle and Ceder, “Effect of Lattice Vibration on
Alloy Thermodynamics,” Rev. Mod. Phys. 75, 11 (2002).

Zarkevich and Johnson, ”Reliable First-Principles Thermodynamics
via truncated Cluster Expansion, Phys. Rev. Lett. 92, 255702 (2004)

And many, many, more with Amodor, Ozolins, Wolverton, Asta, Hart, …… 

Just some comments, not meant to be complete! See Reviews
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Cluster Expansion Procedure

      

€ 

E (1) = Jαα∑ Φ1
α

M

E (n) = Jαα∑ Φn
α

Which structures/clusters
do you include in fitting?

How many structures do
you need?

First-principles
calculations

Regress J’s: how?
• Direct inversion
• Least-Squares

• Cross-Validation

Optimization Problem

Fitting noisy data with
yet unknown set of J’s.

    

€ 

(Φα ({σ})−1E({σ}) = Jα
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Cluster Expansion by Direct Inversion (Connolly-Williams)

      

€ 

E (1) = Jαα∑ Φ1
α

M

E (n) = Jαα∑ Φn
α

Regress J’s by Direct inversion

    

€ 

(Φα ({σ})−1E({σ}) = Jα

•  You choose fixed number of n cluster (somehow)

•  You calculate exactly n structural energies (well-chosen, guessed…)

Connolly, Williams, Phys. Rev. B 27, 5169 (1983)

FCC complete compact
basis to 2nd neighbors.

Consider FCC Cu-Au

• Use only near-neighbor interactions, and
take all clusters and sub-clusters (forms a
local, complete basis for n.n. range).

• Direct Inversion requires 5 structures.

• Cu-Au orders, use simple ordered cells.

There are 5 clusters for which to obtain interactions:   
Empty (J0), point (J1), pair (J2), triplet (J3) and tetrahedron (J4). 
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Connolly-Williams: fcc Cu-Au

    

€ 

E =

0

−35.6

−64.9

−49.8

0

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

meV

Need empty (J0), point (J1), pair (J2), triplet (J3) and tetrahedron (J4). 

 Direct Inversion requires 5 small unit cell structures.
Why these?  They were known from phase diagram!

A1 Cu A1 Au 

Volume (lattice constant)  increases from Cu to Au

a =3.677A a =4.162 A

L12 Cu3Au L12 Au3Cu L10 CuAu 

      

€ 

Φn({σ}) =σ1Lσn

 What are correlation functions
for those structures?

What are DFT
Formation Energies?

See today’ lab
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Correlation Fct. for L10 CuAu

L10 CuAu 

  

€ 

Φ0 = 1

Define variables: Cu  as σ = +1  and Au as σ = –1

Consider the 4-atom cell  (and up to 4-body)

    

€ 

ΦL10 = (1 0 −1/3 0 1)

  

€ 

Φ1 =<σ1 >= 0

Always a constant 

4 sites: [2 (+1)  +  2 (–2)]/4  = 0

  

€ 

Φ2 =<σ1σ2 >= −1/3

  

€ 

1
48

32•(+1)(–1) + 8•(+1)(+1) + 8•(–1)(–1)[ ] = –1/3

4-atoms x 12n.n.= 48 2-atom clusters

  

€ 

Φ3 =<σ1σ2σ3 >= 0 Triplets always with  [2 (+1)(+1)(–1) + 2 (+1)(–1)(–1)] = 0

  

€ 

Φ4 =<σ1σ2σ3σ4 >= 1 Tetrahedron (–1)(–1)(+1)(+1) = 1

each atom has 4-like n.n.
and 8-unlike n.n

Thus, 

You do the others in today’ lab

See addendum slides at
end for simple way.
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Completing the Connolly-Williams: fcc Cu-Au

    

€ 

E =

0

−35.6

−64.9

−49.8

0

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

meV

 Direct Inversion to get empty (J0), point (J1), pair (J2), triplet (J3) and tetrahedron (J4). 

A1 Cu A1 Au L12 Cu3Au L12 Au3Cu L10 CuAu 

    

€ 

J =

−45.7

−7.1

+48.7

7.1

−3

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

 Note that J2 > 0, so system want
Cu next to Au: orderingSo

Correlation functions do not dependent on Volume, just structure!

    

€ 

J = Φ−1E with Φ−1=
1

16

1 4 6 4 1

4 8 0 8 4

6 0 −12 0 6

4 −8 0 8 −4

1 −4 6 −4 1

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

 J4<0 very small but favors clustering.

See addendum slide regarding getting energies for any
other configurations to which you did NOT fit.
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Direct Inversions: a few thoughts

    

€ 

J =

−45.7

−7.1

+48.7

7.1

−3

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

Need to include more structures, without more interactions necessarily.

Best to use Least-Squares (or better) method.

• If a cluster expansion is construct by solving a system of linear equations
with equal number of unknown interactions and known formation energies,
then by definition this direct inversion has no fit error.

• The least-square error is zero!

• But, what happens when you include more structures (in order to include
more physics: configurations and correlations)?  Are you predictive?

•  If more structures and clusters are added, will these J’s change?
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Example of polynomial fitting via LS and CV1

Cross Validation Score (CV): LS Remove-n Estimator

CE predicted energy of structure “j”
obtained from fit to n structures:

1, 2, …., i-1,   , i+1, … n
              ↑
        ith remove

          CV1 or remove-1 estimator.

    

€ 

(CV1)2 =
1
N

(Ei − ˆ E (i ))2

i =1

n
∑

Directly calculated energy

Least-Squares
error

CV1 is estimate of predictive error.
Ex. references:
• W. Conover, “Practical nonparametric statistics,”

Wiley, pp 206-209, 303 (1971).
• M. Stone J. Roy. Stat. Soc. B Met. 36, 111 (1974).
• D.M. Allen, Technometrics 6, 126 (1974).
• CE: Van der Walle, Ceder, J. of Phase Equil. 23, 348
(2002).

Fit prediction error
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CV0 = LS is not helpful for predictive power

Least-Squares
error

• Least-squares procedure to reduce fit error essentially meaningless.
• Can always add clusters and reduce LS error!

Materials Computation Center and  Materials Science and Engineering,  
University of Illinois Urbana-Champaign       ©D.D. Johnson (2005)  and Board of Trustees

Uniqueness of CE fit can to be problem:  e.g., fcc Ni3V

Ni

V

“array of APB”
formed by[110]

DO22L12

L12 DO22

• Only 2nd n.n. differ in the two.

• 3 different sublattices

• Ni3V has an observed  DO22 ground-state structure.

• Many T = 0 K DFT total energy calculations have been done: DO22 < L12.
 ΔE(L12 - DO22) = 111 meV    (DO22 lower)

   All present and previous calcuations agree!

Xu et al. PRB 35, 6940 (1987); Pei et al. PRB 39, 5767 (1989);  Lin et al., PRB 45, 10863 (1992),
Wolverton and Zunger PRB 52, 8813 (1995). Johnson et al., Phys. Rev. B 62, RC11917-20 (2000
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DFT and SRO Diffuse Scattering Data

• T=0 K DFT calculations:          ΔE(L12 - DO22) = 111 meV    (DO22 lower)

• Diffuse scattering (SRO) data:          ΔE(L12 - DO22) = 10±5 meV

from Δα-1 data at Texpt = 1373 K and Tc=1318 K

• DFT Theory estimate 10x larger than experimental assessment!

Is experiment estimate invalid?         Is T=0 K DFT results wrong?

Finel et al. NATO-ASI vol. 256 (1993) and Barrachin et al. PRB 50, 12980 (1994)

Recall: SRO data is related to Free-Energy change:  ΔF = δc+α-1δc ∝ η2 α-1

ΔE(Dis-Ord) is linear in η2 (as assumed in experiment).

EDO22(η) - EL12(η) ~ η2 [α -1(1,1/2,0) - α -1 (100)]  - kBTΔS
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Consider the Effects of Partial Order (like in real systems)

  

€ 

ci
V = 1

4
+ 1

4
η001 ei2πx +ei2πy+ei2πz 

 
  

 

 
  

  

€ 

ci
V = 1

4
+ 1

4
η001 ei2πz 

 
 

 

 
 + 1

2
η

01
2

1
cos2π(y +

1
2

z)
 

 
 

 

 
 

• Based only on SRO,  ΔF ~ η2 α-1(k)  so that   (ΔS=0 for pts and pairs!)

EDO22(η) - EL12(η) ~ η2 [α -1(1,1/2,0) - α -1 (100)]

• As done in experimental analysis, make  η≡ η001= η01/21  (1 LRO parameter)
• η(T) has T-dependence that must be determined from statistical average.

DO22

A1 (fcc disordered)

  

€ 

0
1
2

1
 

 
 

 

 
 

  

€ 

001( )+

L12

  

€ 

001( )
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KKR-CPA: direct calculation of partially-ordered state

Using KKR-CPA 
w/ Partial LRO

From SRO analysis (when η~0)
EDO22(η) - EL12(η) ~ η2 [α -1(1,1/2,0) - α -1(100)]

Homogeneously
Disordered η=0

Fully Ordered
        η=1
“Band Theory”

• T=0 K DFT get ~100 meV, now seen
to be not relevant to SRO expt. that
found 10±5 meV

• ΔE depends on configuration,  i.e., on
LRO parameter for L12, originates from
electronic DOS.

•Extrapolation from high-T  P-LRO
states yields ΔE from SRO.

(Should not be a general expectation.)

Johnson  et al., Phys. Rev. B 62, RC11917 (2000)
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KKR-CPA: electronic DOS  vs η (LRO parameter)

η=0 is     disordered
η=1 is fully ordered 

• Band Energy ~  ∫dε (ε-εF)n(ε)

        ΔE ∝ δn ∝ δc ∝ η

• Coulomb Energy ΔE = 0 as cell and
atomic charges same.

• Average DOS  n(ε) = ∑s ∑α  cα,snα,s(ε)

Symmetry breaking from c = c0+ δc
because all nα,s(ε) about the same.
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KKR-CPA: electronic DOS  vs η (LRO parameter)

• Experimental measurement is correct.
 10 meV is energy associated with SRO.

• T=0 K DFT calculations are correct.
111 meV is energy associated with LRO.   Just not relevant to experiment!

• Direct SRO (KKR-CPA) calculation gives 8.3 meV.

• Direct KKR-CPA Energy as function of LRO gives all!
7-12 meV for high-T  SRO 111 meV for T=0 K LRO

• Experiment and theory were comparing apples and oranges.

• But, also previous CE fits incorrectly got 111 mev for SRO! Why?
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For variational optimization problem
with truncated basis, one can show:

 Include all smaller n-body clusters
and all subclusters ⇒ R(n) ≤ R(n −1).

 basis with a local compact support.

>  Minimizing CV1-score then yields
optimal CE basis (no ‘holes’ in basis).

Optimal Truncated Cluster Expansion: fcc Ni3V

    

€ 

CV2 =
1
N

(Ei − ˆ E i
fit )2i =1

N∑
N.A. Zarkevich, D.D.Johnson, Phys. Rev. Lett.  92, 255702 (2004)

FCC complete compact
basis to 2nd neighbors.

Optimal

Er
ro

r

Expt.

Pr
ed

ic
tio

n

Ni3V

fcc Ni3V

Lecture by Dr. Zarkevich will give more details and other useful items
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Optimal CE Gives Thermodynamic Predictions that converge to
Experimental Data within given CV1-score (accuracy)

Ni3V

Expt

See today’ lab
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CE-Predicted Ni3V Structural Energies (meV)

–115.1–CE-disordered

–14.6144.5159.047
–4.9153.2158.146
–3.5152.0155.4SQS16         45
–15.1137.6152.744
10.6159.5148.743
5.4153.2147.842
–4.4111.0115.431

21.1101.079.913

–15.6197.0212.652

–3.2111.0114.230
–45.156.1101.2L12    (1 0 0)     24
10.095.385.314

–1.545.346.65
–13.030.643.64
2.135.833.73
10.435.825.4DO23  (1 1/4 0)    2
10.510.500.0DO22   (1 1/2 0)   0

dECE3VASPStructure (k-pt)

• CE3  (3 pairs and 3 triplets)
   LS error = 11.9 meV
   CV error = 15.2 meV
   DFT energy rel. error ~1 meV.

• CE finds 23 long-period superstruc.
lower in energy than L12, which were
confirmed by direct DFT calculations.

• Diffraction pts:

• Hence L12 not well described in 2nd
truncation, as found by CPA.

• Triplets important, hence, disordered
state ≠ SQS.

€ 

(1 1
2m
0)
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(100)
APB

DO22

(001) antiphase boundary (APB) within the D022 phase

€ 

EAPB = 4[ECE
DO23 − ECE

DO22 ]

In the range of the truncations, the best
estimate of APB energies is DO23 – DO22.

50±15E001 APB(η=0.7)
65±15E001 APB(η=0.8)

T=900 KT= 273 Kexpt
55±1852±20E001 APB

101.2±15101.6E001 APB(η=1.0)

CEDFT

25.3±1525.4EDO23-DO22

Experimental values are rather independent of temperature, due to limited kinetics.
~75% partial order there is agreement to experiment.
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(100)
APB

DO22

L12

CE not always good: (001) APB from metastable L12

€ 

ΔECE
L12−DO22 ≡ ECE

L12 − ECE
DO22

= 2[ECE
DO23 − ECE

DO22 ]≡ EAPB /2

In the range of the truncations,

–0.5101.1101.6001 APB

errorCEDFT

–50.750.5101.2L12  - DO22

–0.125.325.4DO23-DO22

€ 

ΔECE
L12−DO22 ≠ ΔEDFT

L12−DO22

• But because L12 is highly metastable, any truncated CE is suspect versus LRO
unless clusters that distinguish L12 from DO22 are included in CE.

• If you force L12 to be fit at perfect LRO without those clusters, then CE is overfit.
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Optimal Truncated CE results are Robust and Agree with Experiment.

15---CV score (meV)

123--LS error (meV)

17105*7-12+12±5(meV)

101.6 @ 0K
50-65 @T≠0

10550±20 @273K
55±18 @900K

E(100) APB (meV)

1370 K1900 K1318 KTc  (K)
obeyedviolatedCE Rule
PresentPrevious

Cluster ExpansionCPA
First-Principles Theory

Expt.
Ni3V

extracted-SRO
)DO1L( 222 −

E

+CPA: D.D. Johnson, et al., PRB 62, R11917 (2000).
*Previous Cluster Expansion:
    C. Wolverton, A.Zunger, Z.W.Lu, PRB 49, 16058;
    Z.-W. Lu  and A.Zunger, PRB 50, 6626  (1994);
    C. Wolverton, A.Zunger, PRB 52, 8813  (1995).

Experiment: A. Finel, M. Barrachin, R. Caudron,
A. Francois, in Metallic Alloys: Experimental and
Theoretical Perspective, p. 215-224  (Kluwer,
Dodrecht, 1994);
M. Barrachin et al., PRB 50, 12980 (1994).

Ground
state:

DO22
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Cluster Expansions: Synopsis
• Cluster Expansions are valuable for thermodynamics.

• Need database and optimization to provide basis with compact local
support.

• KKR-CPA provides physical insight to resolve  previous failures, and
CE and KKR-CPA now agree.

• We have provided a framework and, now have toolkit, to perform
such calculations, as long as database is there.

Note:

1) Selectively removing (or adding) structures can make CV smaller, but usually
gives bad disordered energy.  Do not choose longer-ranged clusters at the
expense of shorter-ranged ones, for they re-weight the interactions, and often can
lead to a smaller CV1-score but worse thermodynamics due to bad disordered
energy.

2) Throwing away clusters arbitrarily usually results in the wrong disordered
energy. So do not make “holes” in the basis.

Next Slides: addendum’s
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Addendum: Correlation Fct. for L10 CuAu

L10 CuAu 

  

€ 

Φ0 = 1

Define variables: Cu  as σ = +1  and Au as σ = –1

Consider the 4-atom cell  (and up to 4-body)

    

€ 

ΦL10 = (1 0 −1/3 0 1)

  

€ 

Φ1 =<σ1 >= 0

Always

4 site average:  [+1 +1 –1 –1]/4 = 0

  

€ 

Φ2 =<σ1σ2 >= −1/3 6-sides with pairs: [(+1)(+1) + (–1)(–1) + 4 (–1)(+1)]/6 = –1/3 

  

€ 

Φ3 =<σ1σ2σ3 >= 0 4-faces with triplets: [2 (+1)(+1)(–1) + 2 (+1)(–1)(–1)]/4 = 0

  

€ 

Φ4 =<σ1σ2σ3σ4 >= 1 Tetrahedron    [(–1)(–1)(+1)(+1)]/1

For n.n. clusters only: an easy way to count and get correlations.
Use the 4-atom tetrahedron (translated it gives you  structure, as it is fcc with a basis).
You have 6 edges (all pairs), 4 faces for triplets, and 1 tetrahedron.
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Addendum: Connolly-Williams for fcc Cu-Au

 We did direct inversion from 5 structures and got interactions
empty (J0), point (J1), pair (J2), triplet (J3) and tetrahedron (J4). 

    

€ 

J =

−45.7

−7.1

+48.7

7.1

−3

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

      

€ 

E(V;σ1,Kσn ) = Jα (V )Φα

α
∑ With interactions

Now we can immediately calculation millions!! of other configurations
with n-th correlations obtained from Monte Carlo to get <σ….σ>.

The simplest one to do by hand is the fully-disordered state
(homogeneous solid solution - only really at very-very high-T).

Φn = <σ…σn> = <σ>n       at 50% Au = <σ>n = 0,  for example.

Thus, the energy of the disordered Cu50Au50  Edis= J0 =–46 meV.

(Of course, this is incorrect (should be near zero!) because we did not
take into account size-mismatch, which is large in Cu-Au system.

Simple Tc estimate would be Edis – EL10 = –46 + 66 ~ 20 eV  (~200 K).
If size-mismatch included it would be ~66 meV (~760 K), close to expt!
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Addendum: fcc Cu-Au with Occupation Variable

      

€ 

E(V;σ1,Kσn ) = Jα (V )Φα

α
∑

      

€ 

E(V;ξ1,Kξn ) = Jα (V )Φα

α
∑ ({ξ})Instead of 

    

€ 

ξi =
1if solute

0 if not

 
 
 

Occupation Variable e.g., for Cu3Au, Au =1 (Cu=0)

  

€ 

Φ0 = 1

    

€ 

ΦL10 = (1 1/ 4 1/6 0 0)

  

€ 

Φ1 =< ξ1 >= (0 + 0 + 0 + 1)/ 4 = 1/ 4Always

  

€ 

Φ2 =< ξ1ξ2 >= [4 •(1)(0) + 1•(1)(0) + 1•(1)(1)] /6 = 1/6

  

€ 

Φ3 =< ξ1ξ2ξ3 >= 0NO probability of Au triplets!

  

€ 

Φ4 =< ξ1ξ2ξ3ξ4 >= 0 NO probability of Au tetrahedron

Again, correlations for L10 Cu3Au:  4-atom cell  (and up to 4-body)

Probability of Au (Concentration )

Probability of Au-Au pair!

Occupation Variables are better, easier to generalize and more intuitive!

use 

Exercise: Try re-doing Cu-Au with
these variables and get disordered
energy.  How do things change?


