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In alloys cluster expansions (CE) are increasingly used to combine first-principles electronic-
structure calculations and Monte Carlo methods to predict thermodynamic properties. As a basis-set
expansion in terms of lattice geometrical clusters and effective cluster interactions, the CE is exact if
infinite, but is tractable only if truncated. Yet until now a truncation procedure was not well defined and
did not guarantee a reliable truncated CE. We present an optimal truncation procedure for CE basis sets
that provides reliable thermodynamics. We then exemplify its importance in Ni3V, where the CE has
failed unpredictably, and now show agreement to a range of measured values, predict new low-energy
structures, and explain the cause of previous failures.

DOI: 10.1103/PhysRevLett.92.255702 PACS numbers: 64.70.Kb, 02.70.–c, 05.10.–a, 81.30.Bx
TABLE I. New truncated CE (CE2 and CE3) and experimen-
tal [17] values of Tc (kelvin) and the �EL12�D022SRO (meV/atom)
assessed from SRO, along with the former CE [14] and CPA
[18] results. Details in text.

CE2 CE3 Expt. Old CE CPA

Tc (K) 1335 1370 1318 1900

binaries and ternaries and found it to be especially im-
portant when multibody ECI are significant.

�EL12�D022SRO 22� 16 17� 15 12� 5 101 7–12
Cluster expansion (CE) is increasingly used as a valu-
able tool for predicting and interpreting thermodynamic
effects in a wide class of materials and problems, includ-
ing precipitation [1–4], solubility limits [5], ionic diffu-
sion [6], surface alloying [7] and patterning [8], vacancy
[9] and chemical [3,10] ordering. As a means for
multiscaling based on density-functional theory (DFT)
electronic-structure energetics, the CE is a basis-set ex-
pansion in n-body clusters (associated with n Bravais
lattice points) and effective cluster interactions (ECI)
that specify configurational energies. Except for implicit
DFT errors in the energy database, the CE is exact for an
infinite basis, but impractical if not vastly truncated
[11,12]. Although there are many successes, a truncated
CE can and has unpredictably failed.

We present a new method for an optimal truncation of
the basis set that gives reliable thermodynamics. We then
detail its importance in face-centered-cubic (fcc) Ni3V, a
system with order-disorder transition from disordered
A1 phase to ordered D022 phase at Tc of 1318 K [13].
Previous CE for Ni3V [14–16] had errors of 40% to
1000% for a range of thermodynamic properties, prompt-
ing a search for missing physics [16]. We show that our
new method allows more reliable predictions, including
that of key low-energy configurational excitations. As a
synopsis, we compare in Table I our CE results, along
with the previous ones, with experimental values of Tc
and �EL12�D022SRO , the energy difference between D022 and
metastable L12 structures, as assessed from the short-
range order (SRO) measurements [17,19]. The new CE
now agrees with a range of experimentally assessed val-
ues (more below). We find that prior failure in Ni3V is due
to inappropriate truncation of the cluster basis set and
overfitting to get the ECI—underscoring again the need
for careful application of basis-set methods. We have
tested this new CE method on a few cubic and noncubic
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Cluster Expansions.—Any alloy configuration may be
represented by a set of occupation variables f�	pg, with
�	p � 1�0� if the site p is (is not) occupied by an 	 atom.
Composition c	 is the thermal average and the site aver-
age of f�	pg with 0 � c	 � 1. The energy of any atomic
configuration � can be written in a CE [11] using the
n-body ECI V�n�

f :

ECE��� � V�0� �
X

n;f;d

V�n�
f
����n�
fd ���: (1)

Sums are over symmetry-distinct �n; f� and symmetry-
equivalent �d � 1; . . . ; D�n�

f , the degeneracy) clusters. A
CE basis can be also presented as a product of orthonor-
mal Chebychev polynomials based on �	p [11]. The n-site
correlation function ����n�

fd � h�p0�p00 . . .�p�n� i is given by
an ensemble average over the fixed sets fpg�n�fd defining the
n-body clusters of type �f; d�, see Fig. 1. When evaluated
above Tc, ���

�2�, for example, are related to the SRO. If the
ECI are known, then the energy of any configuration can
be predicted.

A CE can be truncated if there is rapid convergence of
the ECI V�n�

f with increasing distance r (e.g., as measured
by cluster radius of gyration or circumscribed sphere) and
with increasing number of sites n in a cluster f, i.e.,
smaller n-body clusters are more physically important.
Also V�n�

f for n > n0 uncorrelated sites have their contri-
butions to (1) suppressed by ����n� � cn, i.e., V�n���n� ! 0,
and can be neglected. The magnitudes of V�n� typically
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TABLE II. Selected Ni3Venergies (meV/atom) from DFT and
CE relative to ED022DFT , along with those of disordered state, its
approximation by SQS16 [35], and �001� APB.

Structure EDFT ECE2 �ECE2 ECE3 �ECE3

D022 �1
1
2 0� 0.0 7.1 7.1 10.5 10.5

D023 �1
1
4 0� 25.4 31.6 6.2 35.8 10.4

33.7 31.6 �2:1 35.8 2.1
L12 �100� 101.2 56.1 �45:1 61.1 �40:1

147.8 170.6 22.8 154.7 6.9
SQS16 155.4 135.8 �19:7 152.0 �3:5

Disordered 109.8 115.1
�001�APB 101.6 98.0 �3:6 101.1 �0:5
L12–D022 101.2 49.0 �52:2 50.5 �50:7
D023–D022 25.4 24.5 �0:9 25.3 -0.1

FIG. 1 (color online). The 2- to 6-body clusters for 1st and
2nd fcc neighbors. Including clusters up to 4-body in upper set
(6-body in both sets) form a locally complete basis in the range
of 1st (2nd) neighbors. These clusters form tetrahedron (tetra-
hedron-octahedron) approximations used in cluster-variation
method [11].
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become smaller for larger n, although for some systems
ECI convergence is not rapid: such is LixNiO2 where
Jahn-Teller distortions control Li-vacancy ordering and
ionic conduction and are reflected only in long-range
multibody ECI [20]. For a truncated CE, ECI are obtained
via structural inversion [21,22] at fixed c for c-dependent
(canonical) ECI or versus c for c-independent (grand-
canonical) ECI; these sets of ECI are related [23,24].
First, a set of N fully ordered (few atoms per cell) struc-
tures is somehow chosen and their DFTenergies EiDFT (i �
1 . . .N) are calculated. Then, a set of M clusters (M<N)
is somehow picked for use in (1) and ��� are calculated for
each structure. A system ofN linear equations (1) withM
unknown ECI is solved by least-squares (LS) fitting—
which unavoidably includes DFT errors in energy differ-
ences. As is obvious, the sets of structures and clusters
used to get the ECI are not uniquely defined.

New Method.—Here we propose a method that, given a
set of structural energies, unambiguously defines a set of
clusters (and ECI) to provide an optimal truncated CE
and yield reliable thermodynamics. First, we note that if
V�n��r > r�n�0 � � 0, the truncated CE basis with local
compact support that includes all clusters in r�n�0 is locally

complete and exact; whereas, if V�n��r > r�n�0 � � 0, this
truncated CE is approximate and has an error. With no a
priori knowledge of which clusters are required to repre-
sent well a given alloy, the CE error is minimal, in a
Rayleigh-Ritz variational sense, if all admissible n-body
clusters (basis functions) of smaller spatial extent (r �
r�n�0 ) are included before the larger ones. In brief, havingN
EiDFT to be fitted, we can establish a variational CE basis
by simple rules ad vitam aut culpam that implement
easily computationally: (i) If an n-body cluster is in-
cluded, then include all n-body clusters of smaller spatial
extent. (ii) If a cluster is included, include all its subclus-
ters. (iii) To prevent both underfitting and overfitting,
minimize [25,26] the cross-validation (CV) error [27,28]:

CV2 �
1

N

XN

i�1

�EiDFT � E�i�
CE0 �

2: (2)
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E�i�
CE0 in (2) is predicted by a fit to N � 1 DFT energies

excluding EiDFT, rather than to all N as in a LS fit. (This is
an ‘‘exclude 1’’ CV, whereas an ‘‘exclude 0’’ CV is a LS
fit.) While LS measures the error in reproducing known
values of EiDFT, CV error estimates an uncertainty of
predicted values. Both too few (underfitting) or too
many (overfitting) parameters give poor prediction. The
new rule 1, with well-established rule 2, now makes it
easy to define uniquely all clusters in a truncated, varia-
tional CE basis by the number of n-body clusters (or the
size of the largest n-body cluster) for each n � n0. In
particular, rules 1 and 2 permit a hierarchy of ranges for
n-body clusters, i.e., r�n�0 � r�n�1�0 for all n, giving a lo-
cally complete basis for strict equalities, while the in-
equality (e.g., more extended 2-bodies, less extended
3-bodies, even less extended 4-bodies, etc.) allows for
fewer clusters. Because shorter-ranged and lower-order
ECI are more important, rule 1 (rule 2) prohibits exclud-
ing more important ECI and transferring their weight to
less important longer-ranged (higher-order) ones.

Once constructed, an optimal CE can be used to predict
energy of any structure within the CV error. The CE is
valid if the lowest structural energies (including the
ground state) and fully disordered state energies are cor-
rect within the accuracy given by the CV error. A valid
optimal CE provides reliable thermodynamics.

Application.— We now construct and assess the
new canonical CE for Ni3V based on 45 fully relaxed
structural DFT energies, with relative accuracies of
�1 meV=atom [29]. A selected set of energies is given
in Table II.

To examine effects of the new truncation method on
prediction, we first limit the CE basis to pairs only and
find that the pairs-only CV is minimal for 2 (nearest and
next-nearest) pair interactions, see Fig. 2. Within this
range, the symmetry-distinct clusters are two pairs, two
3-bodies, three 4-bodies, a 5-body pyramid, and a 6-body
octahedron, see Fig. 1. The CE with two pair and two
triplet interactions (denoted CE2) with minimal CV of
255702-2
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FIG. 2. (upper) The predicted and observed (dotted line)
Tc (K), and (lower) the CV and LS errors (meV/atom) vs ECI
truncation. Results are for CE with pairs only (left) and for 2
and 3 pairs with a number of 3-body ECI (right). The minimal
CV and LS are given by solid symbols.
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15:5 meV within this range gives Tc at 1335 K, near
the observed 1318 K. Including tetrahedron does not sig-
nificantly alter Tc, as expected for a 4-body cluster at c �
1=4, as c4 � 1 and V�4���4� ! 0. For optimal truncation,
including the most compact 4-body cluster is necessary
before including any other more extended 4-body or
higher-order clusters. Within our set of 45 arbitrary struc-
tures only one (147:8 meV=atom in Table II) has contri-
bution from the most compact 4-body cluster, so any CE
including this cluster has formally infinite (thus not
minimal) CV, so an optimal CE should contain pairs
and triplets only. Indeed, the optimal CE (denoted CE3),
see Fig. 2, includes three pair and three triplet interac-
tions and yields Tc of 1370 K, again near the observed
value and well within the CV error of �15:2 meV. Both
CE2 and CE3 are examples of the localized CE hierarchy
allowed by rules 1–3. Notably, we find no failure or ill
description of thermodynamics for optimal truncation
embodied in the new rules; see Table I.

Moreover, we predicted from these optimal CE that
Ni3V has numerous metastable long-period superstruc-
tures (LPS) of the type h0 1

2m 1i with m � 1. The D022
ground state is m � 1, D023 is m � 2, and L12 is m � 1,
see Table II.We then confirmed by direct DFT calculations
that over 23 metastable structures are between D022 and
L12. Clearly, structural energy differences then will be
sensitive to thermal antisites or partial-order, i.e., chemi-
cal environments that distinguish D022 from other low-
energy structures.
255702-3
The relative energies of D022 and D023, which can be
viewed as D022 with �001� antiphase boundaries (APB),
gives an estimate of the �001� APB energy per site of the
antiphase plane: EAPB � 4�ED023 � ED022�. In Table II, our
calculated EAPBDFT � 101:6 meV and CE3-predicted EAPBCE �
101:1meV agree at perfect long-range order. However,
binaries with first-order transitions have order parameters
� (defined in [18]) that jump from 0 to 0:7–0:9 at Tc. For
partial-order below Tc as in experiment, we predict that
EAPBCE ��� are 81, 65, and 50 meV for �’s of 0:9, 0:8, and
0:7, respectively. From superdislocation separation mea-
surements, assessed values are 52� 20 meV at 273 K and
55� 18 meV at 900 K [17], with roughly constant �< 1
due to lack of kinetics.

The real-space Warren-Cowley SRO parameters 	lmn
were calculated using our CE within Monte Carlo at T �
1:04Tc, as in experiment. The proper way to compare
calculated SRO to experimental data is in [4]. Full details
of the agreement between calculated and experimental
	lmn will be given elsewhere. However, the ener-
getics associated with SRO given by �EL12�D022SRO �
kBT�	�1�100� � 	�1�1 12 0��=16c�1� c� can be directly
estimated from the calculated 	�k� at f1 12 0g and f100g
k-points, as done experimentally [17]. We obtain 17�
15 meV for CE3 at 1392 K, now in agreement with ex-
periment [17] and coherent-potential approximation
(CPA) results [18], see Table I. Our results confirm the
CPA explanation for Ni3V SRO energetics and the dis-
crepancy between T � 0 K DFT results and measure-
ments as arising from the strong dependence of EL12���
on the state of partial order [18].

Finally, we discuss issues that led to previous poor
Ni3V results. For the range of ECIs included in our
truncated CE basis sets, �EL12�D022CE � �EL12CE � ED022CE � �
2�ED023CE � ED022CE � � EAPB=2, as verified in Table II. So for
a truncated CE, L12 can be viewed also as a �001� APB in
D022. Other LPS, e.g., with EDFT � 33:7 meV=atom and
ED023DFT � 25:4 meV=atom in Table II, also have indistin-
guishable energies within the truncated CE. This obser-
vation has great import in Ni3V. Table II shows that
�EL12�D022CE and �EL12�D022DFT are not equal. This implies
again that there is a strong configurational dependence of
partially ordered L12 energy on �, as indeed shown by
CPA calculations [18]. Because L12 is highly metastable
with respect to D022, a truncated CE will be suspect
versus � (particularly for �� 1) unless all clusters that
distinguish L12 fromD022, and similar LPS, are included
in the basis. In Refs. [14–16], �EL12�D022CE at 0 K was
forced to coincide with �EL12�D022DFT � 101 meV by over-
fitting and including certain 3- and 4-body clusters arbi-
trarily that created an invalid CE and hence inaccurate
energetics. Our truncated CE properly describes the ob-
served thermodynamics, but not high-energy and ill-
described structures such as fully ordered L12 that
are unimportant for thermodynamics, as evidenced in
Table II. Of course, calculating more DFT structural
255702-3
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energies and properly extending the CE basis to include
critical n-body clusters would describe everything more
reliably.

Generally speaking, neglecting stronger interactions
and assigning their weight to weaker and less physically
important longer-range [or higher-order] ones, i.e., vio-
lating rule 1 [or rule 2], leads to inaccurate predictions of
energetics. Overfitting (neglecting rule 3) results in large
errors in predicted energies, which were not used in the fit.
Combined violations can result in dramatic failures: for
example, previous CE for Ni-V [14] overfitted energies
(violating rule 3) and included, e.g., a longer-ranged
4-body before the most compact one (violating rule 1);
hence the disagreement with experiment and CPA.
Previous CE results are generally valid if only rules 1
and 2were obeyed with no large overfitting; in such cases,
minimizing the CV error leads only to a moderate im-
provement of accuracy. The optimal CE basis truncation
presented has an error that is variational, which is not
necessarily the case for other basis-set truncation and
reduction methods.

In summary, the cluster-expansion method is a valu-
able first-principles tool for predicting and interpreting
thermodynamic behavior in alloys. With convergence and
reliability in mind, we presented a simple variational
method for the optimal truncation of the cluster-expan-
sion basis set. We presented the method as a set of rules
that are computationally easy to implement. For a given
set of DFT structural energies and no a priori knowledge
of which clusters are needed to represent a particular
alloy well, our truncation method provides a unique
optimal choice of clusters based on their contribution to
thermodynamics and variational reduction in error,
avoids choosing clusters by intuition, and gives reliable
thermodynamic predictions. We exemplified the impor-
tance of this new approach in fcc Ni3V by predicting
important new metastable structures and by showing
agreement with order-disorder temperature, antiphase
boundary energy, and short-range order energetics, all
quantities missed by previous cluster-expansion applica-
tions. We also elucidated the origin of the previous
failures. Without a priori information, the new cluster-
expansion strategy allows reliable thermodynamic pre-
dictions in alloys.
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[5] V. Ozolin, š and M. Asta, Phys. Rev. Lett. 86, 448 (2001).
[6] A. Van der Ven et al., Phys. Rev. B 64, 184307 (2001).
[7] R. Drautz et al., Phys. Rev. Lett. 87, 236102 (2001).
[8] B. D. Krack et al., Phys. Rev. Lett. 88, 186101 (2002).
[9] G. L. Hart and A. Zunger, Phys. Rev. Lett. 87, 275508

(2001).
[10] S. Müller and A. Zunger, Phys. Rev. Lett. 87, 165502

(2001).
[11] J. M. Sanchez et al., Physica (Amsterdam) 128A, 334

(1984).
[12] J. M. Sanchez, Phys. Rev. B 48, 14013 (1993).
[13] Desk Handbook: Phase Diagrams for Binary Alloys,

edited by H. Okamoto (ASM International, Materials
Park, Ohio, 2000).

[14] C. Wolverton et al., Phys. Rev. B 49, 16 058 (1994).
[15] Z. Lu and A. Zunger, Phys. Rev. B 50, 6626 (1994).
[16] C. Wolverton and A. Zunger, Phys. Rev. B 52, 8813

(1995).
[17] A. Finel et al., in Metallic Alloys: Experimental and

Theoretical Perspectives, edited by J. Faulkner and R.
Jordan, NATO Advanced Study Institutes, Ser. B,Vol. 256
(Kluwer, Dordrecht, 1994), pp. 215–224.

[18] D. D. Johnson et al., Phys. Rev. B 62, R11 917 (2000).
[19] M. Barrachin et al., Phys. Rev. B 50, 12 980 (1994).
[20] M. E. Arroyo y de Dompablo et al., Phys. Rev. B 63,

144107 (2001).
[21] D. de Fontaine, Solid State Phys. 47, 33 (1994).
[22] D. D. Johnson, in Encyclopedia of Materials: Science &

Technology, edited by K. H. J. Buschow et al. (Elsevier,
New York, 2001).

[23] M. Asta et al., Phys. Rev. B 44, 4907 (1991).
[24] C. Wolverton et al., Phys. Rev. B 44, 4914 (1991).
[25] M. H. F. Sluiter et al., Phys. Rev. B 53, 6137 (1996).
[26] A. van de Walle and G. Ceder, J. Phase Equilib. 23, 348

(2002).
[27] M. Stone, J. R. Stat. Soc. Ser. B 36, 111 (1974).
[28] D. M. Allen, Technometrics 16, 125 (1974).
[29] We used theVienna ab initio simulation package [30–32]

with ultrasoft pseudopotentials [33] from Kresse and
Hafner [34], a plane-wave cutoff of 440 eV, and a fine
k-space mesh to ensure forces <30 meV= #A and relative
energy accuracy �1 meV=atom.

[30] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
[31] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15

(1996).
[32] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169

(1996).
[33] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
[34] G. Kresse and J. Hafner, J. Phys. 6, 8245 (1994).
[35] C. Wolverton, Acta Mater. 49, 3129 (2001).
255702-4


