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The Cluster Expansion and Phase Diagrams

α = cluster functions
σ = atomic configuration on a lattice

H. Okamoto, J. Phase Equilibria, '93

How do we get the phase diagram from the cluster expansion Hamiltonian?

Cluster Expansion
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Outline

• Phase Diagram Basics
• Stable Phases from Cluster Expansion  - the Ground State Problem

– Analytical methods
– Optimization (Monte Carlo, genetic algorithm)
– Exhaustive search

• Phase Diagrams from Cluster Expansion: Semi-Analytical Approximations
– Low-T expansion
– High-T expansion
– Cluster variation method

• Phase Diagrams from Cluster Expansion: Simulation with Monte Carlo
– Monte Carlo method basics
– Covergence issues
– Determining phase diagrams without free energies.
– Determining phase diagrams with free energies.

Phase Diagram Basics
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What is A Phase Diagram?

• Phase: A chemically and structurally 
homogeneous portion of material, generally 
described by a distinct value of some 
parameters (‘order parameters’).  E.g., ordered 
L10 phase and disordered solid solution of Cu-
Au

• Gibb’s phase rule for fixed pressure: 
– F(degrees of freedom) = C(# components) - P(# 

phases) + 1
– Can have 1 or more phases stable at different 

compositions for different temperatures
– For a binary alloy (C=2) can have 3 phases with 

no degrees of freedom (fixed composition and 
temperature), and 2 phases with 1 degree of 
freedom (range of temperatures).

• The stable phases at each temperature and 
composition are summarized in a phase 
diagram made up of boundaries between 
single and multiple phase regions.  Multi-phase 
regions imply separation to the boundaries in 
proportions consistent with conserving overall 
composition.

H. Okamoto, J. Phase Equilibria, '93

The stable phases can be 
derived from optimization of an 
appropriate thermodynamic 
potential.

2 
phase

3 phase
1 

phase

• The stable phases minimize the total thermodynamic 
potential of the system
– The thermodynamic potential for a phase α of an alloy under 

atmospheric pressure: 

– The total thermodynamic potential is

– The challenges:
• What phases δ might be present?
• How do we get the Fδ from the cluster expansion?
• How use Fδ to get the phase diagram?

– Note: Focus on binary systems (can be generalized but details 
get complex), focus on single parent lattice (multiple lattices can 
be treated each separately)

Thermodynamics of Phase Stability
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Stable Phases from Cluster Expansion –
the Ground State Problem

Determining Possible Phases

• Assume that the phases that might 
appear in phase diagram are 
ground states (stable phases at 
T=0).   This could miss some 
phases that are stabilized by 
entropy at T>0.

• T=0 simplifies the problem since 
T=0 ⇒ F is given by the cluster 
expansion directly.  Phases δ are 
now simply distinguished by 
different fixed orderings σδ.

• So we need only find the σ that give 
the T=0 stable states.  These are 
the states on the convex hull.

H. Okamoto, J. Phase Equilibria, '93
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The Convex Hull
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Convex Hull in blue
2-phase region

1-phase point

• None of the red points give the lowest F=ΣFδ.  Blue points/lines give 
the lowest energy phases/phase mixtures.

• Constructing the convex hull given a moderate set of points is 
straightforward (Skiena '97)

• But the number of points (structures) is infinite!  So how do we
get the convex hull?

Getting the Convex Hull of a Cluster Expansion 
Hamiltonian

• Linear programming methods
– Elegantly reduce infinite discrete problem to finite 

linear continuous problem.
– Give sets of Lattice Averaged (LA) cluster functions 

{LA(φ)} of all possible ground states through robust 
numerical methods.

– But can also generate many “inconstructable” sets of 
{LA(φ)} and avoiding those grows exponentially 
difficult.

• Optimized searching
– Search configuration space in a biased manner to 

minimize the energy (Monte Carlo, genetic 
algorithms).

– Can find larger unit cell structures that brute force 
searching

– Not exhaustive – can be difficult to find optimum and 
can miss hard to find structures, even with small unit 
cells.

• Brute force searching
– Enumerate all structures with unit cells < Nmax atoms 

and build convex hull from that list.
– Likely to capture most reasonably small unit cells (and 

these account for most of what are seen in nature).
– Not exhaustive – can miss larger unit cell structures.

( ) ( )( )E   V m LAα α α
α

σ φ σ=∑

(Zunger, et al., 
http://www.sst.nrel.gov/topics/new_mat.html)

(Blum and Zunger, Phys. Rev. B, ’04)
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Phase Diagrams from Cluster Expansion: 
Semi-Analytical Approximations

Semi-Analytic Expressions for F (Φ)

• High-temperature expansion
• Low-temperature expansion
• Mean-field theory

( ) ( )( )( )1 1
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ln ln exp
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From basic thermodynamics we can write F in terms of the cluster 
expansion Hamiltonian

But this is an infinite summation – how can we evaluate Φ?

Cluster expansion

For a binary alloy on a fixed lattice the number of particles is conserved 
since NA+NB=N=# sites, thus we can write the semi-grand canonical 
potential Φ in terms of one chemical potential and NB (Grand canonical = 
particle numbers can change, Semi-Grand canonical = particle types can 
change but overall number is fixed)

( ) ( )( )( )1( , ) ln expB BE TS N E N
σ

µ β µ β β σ µ σ−Φ = − − = − −∑
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High-Temperature Expansion
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Assume x=β(E-µn) is a small number (high temperature) and expand the 
ln(exp(-x))

Could go out to many higher orders …

High-Temperature Expansion Example 
(NN Cluster Expansion)
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z = # NN per atom

So first correction is second order in βVNN and reduces the free energy
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Low-Temperature Expansion
Start in a known ground state α, with chemical potentials that stabilize α, 
and assume only lowest excitations contribute to F
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This term 
assumed small

Expand ln in 
small term

Keep contribution from single spin flip at a site s

Low-Temperature Expansion Example
(NN Cluster Expansion)
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Assume an unfrustrated ordered phase at c=1/2

So first correction goes as exp(-2zβVNN) and reduces the free energy



9

-5

-4.5

-4

-3.5

-3

-2.5

-2
0.25 0.5 0.75 1 1.25

kBT/|zV|
Fr

ee
 E

ne
rg

y

LT_0th
HT_0th
LT_1st
HT_1st kBTc

Transition Temperature from LT and HT 
Expansion

NN cluster expansion on a simple cubic lattice (z=6)
VNN>0 ⇒ antiferromagnetic ordering

( )
,

; 0NN i j
i j

E Vσ σ σ µ
< >

= =∑

kBTc/|zV|=0.721 (0th), 0.688 (1st), 0.7522 (best known) 

Mean-Field Theory – The Idea

The general idea: Break up the system into small clusters in 
an average “bath” that is not treated explicitly

( ) ( )( )( )1( , ) ln exp BE N
σ

µ β β β σ µ σ−Φ = − − −∑
For a small finite lattice with N-sites finding φ is not hard –
just sum 2N terms 

For an infinite lattice just 
treat subclusters explicitly 
with mean field as 
boundary condition 

Mean field

Treated fully
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Implementing Mean-Field Theory
The Cluster Variation Method

• Write thermodynamic potential Φ in terms 
of probabilities of each configuration ρ(σ), 
Φ[{ρ(σ)}].

• The true probabilities and equilibrium Φ
are given by minimizing Φ[{ρ(σ)}] with 
respect to {ρ(σ)}, ie, δΦ[{ρ(σ)}]/δ{ρ(σ)}=0.

• Simplify ρ(σ) using mean-field ideas to 
depend on only a few variables to make 
solving δΦ[{ρ(σ)}]/δ{ρ(σ)}=0 tractable.

(Kikuchi, Phys. Rev. '51)

Writing φ[{ρ(σ)}].
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Factoring the Probability to Simplify ρ(σ)

( ) ( ) ( )
M

aα
α α α α

α α α

ρ σ ρ σ ρ σ
⊆
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Irreducible probabilities.  Depend on only spin values in 
cluster of points η.  Have value 1 if the sites in η are 
uncorrelated (even if subclusters are correlated)

( )α αρ σ

η Cluster of lattice points.

( )α αρ σ Probability of finding spins ση on cluster of sites η.

aα Kikuchi-Barker coefficients

Has 2N values Has 2NηM values – much smaller

Mη Maximal size cluster of lattice points to treat explicitly.

Truncating the Probability Factorization
= Mean Field

Mean field

Treated fully

αM

Setting 1
Mα αρ ⊃ =

treats each cluster αM
explicitly and embeds 
it in the appropriate 
average environment

( ) ( ) ( )
M

aα
α α α α

α α α

ρ σ ρ σ ρ σ
⊆

= ≈∏ ∏



12

The Mean-Field Potential

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

1

1

( , )

ln

ln
MM

M

MM

B

B

a

a
B

E TS N

E N

E

a

N

α

α

α

η

α

σ σ σ

α α α
σ α α

α α α α α
α α σ

α α α
σ α α

µ β µ

ρ σ σ β ρ σ ρ σ µ ρ σ σ

ρ σ σ

β ρ σ ρ σ

µ ρ σ σ

−

⊆

−

⊆

⊆

Φ = − −

= − −

⎛ ⎞
≈ ⎜ ⎟⎜ ⎟

⎝ ⎠
−

⎛ ⎞
− ⎜ ⎟⎜ ⎟

⎝ ⎠

∑ ∑ ∑

∑ ∏

∑ ∑

∑ ∏

Φ now depends on only

( ){ }Mα α αρ σ⊆

and can be minimized to 
get approximate 
probabilities and potential
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The Modern Formalism

• Using probabilities as variables is hard because you 
must
– Maintain normalization (sums = 1)
– Maintain positive values
– Include symmetry

• A useful change of variables is to write probabilities in 
terms of correlation functions – this is just a cluster 
expansion of the probabilities
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The CVM Potential
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For a multicomponent alloy

δ The phase
Clusters of sitesα,β
Cluster functions for each cluster – associated with multiple speciesτ

Number of speciesm

Set of possible maximal clusters{αM}

Orbit of clusters under symmetry operations of phase δOδ

V matrix that maps correlation functions to probabilitiesV
Correlation function (thermally averaged cluster functions)ξ

D Degeneracies (multiplicities)
a Kikuchi-Barker coefficients

Simplest CVM Approximation – The Point
(Bragg-Williams, Weiss Molecular Field)
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For a disorderd phase on a lattice with one type of site
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CVM Point Approximation - Bragg-Williams
(NN Cluster Expansion)
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Bragg-Williams Approximation 
(NN Cluster Expansion)
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Comparison of Bragg-Williams and High-
Temperature Expansion

( )21( ) ln 2
4HT NN
zN Vβ β β− ⎛ ⎞Φ ≈ −⎜ ⎟
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2BW NN B B B B B

Nz V c N c c c cβ β −Φ = − + + − −

1( ) ln 2BW Nβ β −Φ = −

Assume

High-temperature

Bragg-Williams

Optimize F over cB to get lowest value ⇒ cB=1/2 ⇒

Bragg-Williams has first term of the high-temperature expansion, but not 
second.  Second term is due to correlations between sites, which is 
excluded in BW (point CVM)

Critical Temperatures

HT/LT approx: kBTc/|zV|=0.721 (0th), 0.688 (1st) 

de Fontaine, Solid State Physics ‘79
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Limitations of the CVM (Mean-Field), High- and 
Low-Temperature Expansions

• CVM
– Inexact at critical temperature, but can be quite accurate.
– Number of variable to optimize over (independent probabilities within 

the maximal cluster) grows exponentially with maximal cluster size.
– Errors occur when Hamiltonian is longer range than CVM approximation 

– want large interactions within the maximal cluster.
– Modern cluster expansions use many neighbors and multisite clusters 

that can be quite long range.
– CVM not applicable for most modern long-range cluster expansions.  

Must use more flexible approach – MonteCarlo!
• High- and Low-Temperature Expansions

– Computationally quite complex with many terms
– Many term expansions exist but only for simple Hamiltonians
– Again, complex long-range Hamiltonians and computational complexity 

requires other methods – Monte Carlo!

Phase Diagrams from Cluster Expansion: 
Simulation with Monte Carlo
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What Is MC and What is it for?

• MC explores the states of a system stochastically with probabilities that 
match those expected physically

• Stochastic means involving or containing a random variable or 
variables, which is practice means that the method does things based on 
values of random numbers

• MC is used to get thermodynamic averages, thermodynamic 
potentials (from the averages), and study phase transitions

• MC has many other applications outside materials science, where is 
covers a large range of methods using random numbers

• Invented to study the neutron diffusion in bomb research at end of WWII
• Called Monte Carlo since that is where gambling happens – lots of 

chance!

http://www.monte-carlo.mc/principalitymonaco/index.htmlhttp://www.monte-carlo.mc/principalitymonaco/entertainment/casino.html

MC Sampling

• Can we perform this summation numerically? 
• Simple Monte Carlo Sampling: Choose states s at 

random and perform the above summation.  Need to get 
Z, but can also do this by sampling at random

• This is impractically slow because you sample too many 
terms that are near zero

( ) ( ) ( )A A
σ

σ σ ρ σ=∑
ρ(σ) is the probability of a having configuration σ
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σ

β σ µ σ β σ µ σ
ρ σ

β σ µ σ

− − − −
= =

− −∑
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Problem with Simple MC Sampling
ρ(σ) is Very Sharply Peaked

States σ

ρ(σ)

Sampling states here 
contributes ≈0 to integral

Almost all the contribution to 
an integral over ρ(σ) comes 
from here

E.g., Consider a non-interacting cluster expansion spin model with H=-µNB. 
For β=µ=1 cB=1/(1+e)=0.27.  For N=1000 sites the probability of a 
configuration with cB=0.5 compared to cB=0.27 is 

P(cB=0.5)/P(CB=0.27)=exp(-N∆cB)=10-100

Better MC Sampling

• We need an algorithm that naturally samples states for 
which ρ(σ) is large.  Ideally, we will choose states with 
exactly probability ρ(σ) because
– When ρ(σ) is small (large), those σ will not (will) be sampled
– In fact, if we choose states with probability ρ(σ), then we can 

write the thermodynamic average as 

– ρ(σ) is the true equilibrium thermodynamic distribution, so our 
sampling will generate states that match those seen in an 
equilibrium system, which make them easy to interpret

• The way to sample with the correct ρ(σ) is called the 
Metropolis algorithm

( ) ( )1  where  states are sampled with probability ( )A A N
N σ

σσ

σ σ ρ σ= ∑
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Detailed Balance and The Metropolis Algorithm
• We wants states to occur with probability ρ(σ) in the equilibrated 

simulation and we want to enforce that by how we choose new states at 
each step (how we transition).

• Impose detailed balance condition (at equilibrium the flux between two 
states is equal) so that equilibrium probabilities will be stable

ρ(o)π(o→n)=ρ(n)π(n→o)

• Transition matrix π(o→n) = α(o→n) x acc(o→n), where α is the attempt
matrix and acc is the acceptance matrix.

• Choose α(o→n) symmetric (just pick states uniformly): α(o→n)=α(n→o)
• Then

ρ(o)π(o→n)=ρ(n)π(n→o) ⇒ ρ(o)xacc(o→n)=ρ(n)xacc(n→o)
⇒ acc(o→n)/acc(n→o) = ρ(n)/ρ(o) = exp(-βΦ(n))/exp(-βΦ(o))

•So choose acc(o→n) = ρ(n)/ρ(o) if ρ(n)<ρ(o)
1       if ρ(n)>=ρ(o)

This keeps detailed balance (stabilizes the probabilities ρ(σ)) and equilibrates 
the system if it is out of equilibrium – this is the Metropolis Algorithm
There are other solutions but this is the most commonly used

The Metropolis Algorithm (General)

• An algorithm to pick a series of configurations so that they 
asymptotically appear with probability ρ(σ)=exp(-βE(σ))
1. Assume we are in state σi

2. Choose a new state σ*, and define ∆E=E(σ*)-E(σ)
3. If ∆E<0 then accept σ*
4. If ∆E>0 then accept σ* with probability exp(-β∆E)
5. If we accept σ* then increment i, set σi=σ* and return to 1. in a 

new state
6. If we reject σ* then return to 1. in the same state state σi

• This is a Markov process, which means that the next state depends 
only on the previous one and none before.
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Metropolis Algorithm for Cluster Expansion Model 
(Real Space)

• We only need to consider spin states
1. Assume the spins have value (σ1 ,… σj ,…, σN)
2. Choose a new set of spins by flipping, σj

* = -σj, where i is 
chosen at random 

3. Find ∆Φ=E(σ1 ,… -σj ,…, σN)-E(σ1 ,… σj,…, σN)-µσj (note that this 
can be done quickly be only recalculating the energy 
contribution of spin i and its neighbors)

4. If ∆Φ<0 then accept spin flip
5. If ∆Φ>0 then accept spin flip with probability exp(-β∆Φ)
6. If we reject spin flip then change nothing and return to 1

• The probability of seeing any set of spins σ will tend asymptotically 
to 

( ) ( )( )exp Zρ σ β σ= − Φ

Obtaining Thermal Averages From MC

• The MC algorithm will converge to sample states with 
probability ρ(σ).  So a thermal average is given by 

• Note that Nmcs should be taken after the system 
equilibrates

• Fluctuations are also just thermal averages and 
calculated the same way

( ) ( )
1

1 mcsN

i
imcs

A A A
Nσ

σ ρ σ
=

= =∑ ∑

( ) ( ) ( )2

1

1 mcsN

i
imcs

A A A A A
Nσ

δ δ σ ρ σ δ
=

− = = =∑ ∑
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Energy Vs. MC Step

MC Step

E
ne

rg
y

Equilibration period: Not 
equilibrated, thermal 
averages will be wrong Equilibrated, thermal 

averages will be right

<E>

<δE>

Correlation 
length?

Measuring Accuracy of Averages

1

1 L

iL
i

A A
L =

= ∑ What is the statistical error in <A>?

( ) ( )2
2

1 1

1 L L

L i jL
i j

Var A A V
L

σ −
= =

= = ∑∑ 2

1

1ˆ
L

L l

l l t l
t

V A A A
L l

−

+
=

= −
− ∑

Vl is the covariance and gives the autocorrelation of A
with itself l steps later 
Longer correlation length ⇒ less independent data ⇒
Less accurate <A>

( )( ) ( )A
Error Var A

L
σ

= =For uncorrelated data

But MC steps are correlated, so we need more thorough statistics
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Example of Autocorrelation Function

∆ MC Step

N
or

m
al

iz
ed

 a
ut

oc
or

re
la

tio
n

Correlation length ~500 steps

Semiquantitative Understanding of Role of 
Correlation in Averaging Errors

( ) ( )
( )

( )( ) ( )

2
02

1 1

2
0

21 1

/ 2

L L L
c

L i j lL
i j i L

L

L
L

c

LVar A A V V V
L L L

V A

A
Error Var A

L L

σ

σ

σ

−
= = =−

= = ≈ ≈

=

= =

∑∑ ∑

This makes sense!  Error decreases with sqrt of the 
number of uncorrelated samples, which only occur 
every ~L/Lc steps.  As Lc→1 this becomes result for 
uncorrelated data.

If we assume Vl decays to ~zero in Lc<<L steps, then
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Methods to Test Convergence Efficiently

• Set a bound on VAR(AL) and then 
keep simulating until you meet it.

• Different properties can converge at 
different rates – must test each you 
care about

• Calculating VAR(AL) exactly is very 
slow – O(L2)

• One quick estimate is to break up the 
data into subsets s of length Lsub, 
average each, and take the VAR of 
the averages.  Can depend on set 
lengths

• Another estimate is to assume a 
single correlation length which 
implies

s=1 s=2 s=3 s=4 s=5s=1 s=2 s=3 s=4 s=5s=1 s=2 s=3 s=4 s=5s=1 s=2 s=3 s=4 s=5

( ) ( )
2

2

1

subL L
sub

L s L
s

LVar A A A
L =

⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑

( ) ( ) ( )0 0 0
2 exp / lnc

L l c c l
LVar A V V V l L L l V V
L

= ⇒ = − ⇒ =

Find where V0/Vl = e to estimate Lc and VAR in O(NlnN) calcs (ATAT)
van de Walle and Asta, MSMSE ‘02

Finding Phases With MC
• MC automatically converges 

to correct thermodynamic 
state – Can we just scan 
space of (c,T) to get phase 
diagram?

• Issue 1 - Identification: 
How do we recognize what 
phase we are in?
– Comparison to ground state 

search results to give guidance
– Order parameters: 

concentration, site 
occupancies of lattice

– Visualize structure (challenging 
due to thermal disorder)

– Transition signified by changes 
in values of derivatives of free 
energy (E, Cv, …)

H. Okamoto, J. Phase Equilibria, '93
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Finding Phases with MC

• Issue 2 – 2-phase regions: What happens in 2-phase 
regions?
– System will try to separate – hard to interpret.
– So scan in (µ,T) space (materials are stable single phase for any 

given value of (µ,T))

2-phase

T

c
2-phase

γ

δ

T

µ

γ

δ

Finding Phases with MC
• Issue 3 – Hysteresis:  Even in 

(T,µ) space the MC may not 
converge to correct phase
– Multiple phases can only be 

stable at the phase boundary 
values of (µ,T), but phases 
are always somewhat 
metastable near boundary 
regions

– Therefore, the starting point 
will determine which phase 
you end up in near the phase 
boundary

– To get precise phase 
boundaries without 
hysteresis you must equate 
thermodynamic potentials.  
How do we get 
thermodynamic potentials 
out of MC?

T

µ

γ δ

Metastable boundaries

Φγ<Φδ Φγ>ΦδΦγ=Φδ
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Thermodynamic Potentials in MC
• All phase boundaries are defined by the set of points where 

Φδ(µ,β)=Φγ(µ,β) for all possible phases a, g.  If we know Φ we can 
find these points of intersection numerically.  Then we can get (c,T) 
phase diagram from c(µ), which comes naturally from the MC, or the 
relation c=-dΦ/dµ.  But how do we get Φδ(µ,β) for each phase?

• Thermodynamic potentials cannot be calculated by simple direct MC 
thermal averaging – why?  Because S is not the thermodynamic 
average of anything!!  We always measure + calculate derivatives of 
potentials

• But changes in thermodynamic potentials are given by 
thermodynamic averages!!

• So we can find a potential by finding a state where the potential is 
know and integrating the changes (given by MC thermal averages) 
from the known state to the desired state.  This is Thermodynamic 
Integration!

• There are other ways to get thermodynamic potentials with MC (e.g., 
umbrella sampling) but these will not be discussed here and are not 
used much for cluster expansion Hamiltonians.

( ) ( )( )( )1( , ) ln expB BE TS N E N
σ

µ β µ β β σ µ σ−Φ = − − = − −∑

Thermodynamic Integration
van de Walle and Asta, MSMSE ‘02

( ) ( )( )( )1( , ) ln expB BE TS N E N
σ

µ β µ β β σ µ σ−Φ = − − = − −∑

( ) ( )( , ) B Bd E N d N dβ µ β µ β β µΦ = − −

The total differential of the semi-grand canonical potential is

This can be integrated to give

( ) ( )
1 1

0 0

,

1 1 0 0
,

1( , ) ( , ) , ,B BE N N d
µ β

µ β

µ β µ β µ β β µ
β

Φ = Φ + − −∫ i

This allows one to calculate any Φ(µ1,β1) given
• A starting value Φ(µ0,β0) – obtain from high and low T 
expansions
• MC simulations of the expectation values – use methods just 
discussed
• Must be done for each phase – can be efficient in only 
calculating values near boundaries
Efficiently implemented in ATAT! http://cms.northwestern.edu/atat/
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Example of Thermodynamic Integration

T

c

γ

δT*

c*γ c*δ

T

µ

γ

δ
T*

Thermodynamic 
integration paths

Φ

µµ*

Φγ(µ*,Τ*)=Φδ(µ*,Τ*)δ

γ cγ*= cγ(µ*,Τ*)
cδ*= cδ(µ*,Τ*)

T

c

γ

δT*

c*γ c*δ

Get phase boundary points

Summary

Identify possible phases: Ground states

MC + Thermodynamic integration to get quantitative phase diagram
Use semi-analytic functions for integration starting points

MC/semi-analytic functions to identify qualitative phase diagram

Cluster Expansion ( ) ( )E   V  α α
α

σ φ σ=∑


