System-Level Modeling and Design of Integrated MEMS

Tamal Mukherjee
Department of Electrical and Computer Engineering
Carnegie Mellon University
tamal@ece.cmu.edu
http://www.ece.cmu.edu/~mems

NSF Summer School on Computational Approaches for Simulation of MEMS, Friday, May 24

System Design Bottleneck

- Increasing gap between technology advancement and ability to design new systems [SIA]
- Design team sizes need to increase to eliminate gap
MEMS Design Bottleneck?

- Same bottleneck, different scale
- How do we get design productivity to increase, so complexity can increase?

Outline

- MEMS Design Issues
- Process & Design Abstractions
- MEMS Circuit Level Modeling & Simulation
- Layout Generation
- Layout Verification
- Mesh Generation
- Synthesis
- Summary
Today’s MEMS Designers

- Process flow
- Materials characterization

1) Process design

- Modeling of physical interactions
- Layout-based design
- Interface circuits

2) Component design
Bottom-Up Design

Device design

System design

Macromodel Generation

Top-Down Design

fabrication requests

Foundry

Application-Specific Design

- Reusable, parametric models
- Macromodel bottleneck moved to library creation, and removed from design iteration

design rules, material parameters, device models
MEMS Design Issues

- Layout
 - Will it release?
 - Will it function?
 - Will it meet specifications?
 - Dynamic range
 - Sensitivity (parasitics)
 - Sensor resolution (noise)

- Design
 - Interface circuits
 - Electromechanical feedback systems
 - Device matching
 - Design for manufacturability, testability
 - minimize sensitivity to variations
 - account for device calibration

➤ Requires hierarchical design methodology

Integrated MEMS Design

- Application Driven ⇒ Low-volume custom MEMS

- Design Methodology Characteristics
 - Support wide variety of MEMS fab processes
 - Supporting a wide class of MEMS designs
 - Extensible to new MEMS design concepts
 - Fits into the existing VLSI design flows
 - Capable of evaluating integrated system designs
Outline

- MEMS Design Issues
- Process & Design Abstractions
- MEMS Circuit Level Modeling & Simulation
- Layout Generation
- Layout Verification
- Mesh Generation
- Synthesis
- Summary

Process Abstractions: CMOS Micromachining
Process Abstractions: Polysilicon Micromachining

- movable polysilicon beam
- anchored electrodes
- insulating plane
- ~ 2-3 µm
- > 2 µm

Process Abstractions: Technology Capture

- Decoupling of process complexity and design complexity through process abstraction
- MEMS processing derived from VLSI
- Use VLSI process abstractions
 - Layout technology file
 - Model technology file
 - Design rule file
 - Layout (parasitic) extraction file
Process Abstractions:
Layout Technology File

- Same as VLSI
- Interface to foundry
- Layer definition
 - GDS number
- Layer order
- Not required for simulation

```
(("Nwell" "drawing") 42 0 t)
(("Active" "drawing") 43 0 t)
...
(("Poly1" "drawing") 46 0 t)
(("P1Con" "drawing") 47 0 t)
(("Metal1" "drawing") 49 0 t)
(("Metal2" "drawing") 51 0 t)
```

```
(("POLY0" "drawing") 13 0 t)
(("HOLE0" "drawing") 41 0 t)
(("POLY1" "drawing") 45 0 t)
(("ANCHOR1" "drawing") 43 0 t)
(("HOLE1" "drawing") 44 0 t)
(("POLY2" "drawing") 49 0 t)
(("HOLE2" "drawing") 46 0 t)
```

Process Abstractions:
Model Technology File

- Process-dependent information
 - Layer thicknesses
 - Material properties
- Parameters common to all models in element library

```
`define m1_resistivity 0.07
`define m1_thickness 0.7u
`define m1_density 2700
`define spacer_gap 20u
`define E 62G
`define stress 300M
`define stress_gradient 10M
```

```
`define poly1_resistivity 10
`define poly1_thickness 2u
`define poly1_density 2330
`define spacer_gap 2u
`define E 165G
`define stress 3M
`define stress_gradient 0.1M
```
Process Abstractions:
Design Rule Check

- MEMS introduces
 - Sacrificial etch to release structure
- Microstructure release of depends on
 - Gap size
 - Gap shape
 - Gap spatial distribution

unreleased beam
unreleased plate
released plate

Process Abstractions:
MEMS-Specific Design Rules

- MEMS release step adds new constraints on design rules

- CMOS-MEMS Example:
 A – Minimum and maximum structural width
MEMS release step adds new constraints on design rules

CMOS-MEMS Example:
- A – Minimum and maximum structural width
- B – Minimum gap between structures
- C – Minimum structural metal extension
Process Abstractions: MEMS-Specific Design Rules

- MEMS release step adds new constraints on design rules.

- CMOS-MEMS Example:
 - A – Minimum and maximum structural width
 - B – Minimum gap between structures
 - C – Minimum structural metal extension
 - D – Minimum polysilicon spacing from edge

- CMOS-MEMS Example:
 - A – Minimum and maximum structural width
 - B – Minimum gap between structures
 - C – Minimum structural metal extension
 - D – Minimum polysilicon spacing from edge
 - E – Minimum electronics spacing from edge

(c. Carnegie Mellon)
MEMS release step adds new constraints on design rules

CMOS-MEMS Example:

- A – Minimum and maximum structural width
- B – Minimum gap between structures
- C – Minimum structural metal extension
- D – Minimum polysilicon spacing from edge
- E – Minimum electronics spacing from edge
- F – Maximum beam length

Minimum possible gap

- Function of adjacent structural width
- Etch rate depends on local neighborhood

Structural design issues

- Narrow gaps desired for actuation
- Wide structures desired for rigidity and wiring

Desire context-dependent DRC
Process Abstractions: Context Dependent DRC

- Etch rate different for plate and non-plate regions
- MEMS areas recognized by maximum etch criterion
- Released areas found by emulating etch phenomenon

B. Baidya et al., MSM 2001
Process Abstractions: Layout Parasitic Extraction

- Circuit Extraction
 - Recognizes layer overlaps and gaps
 - Capacitors, resistors and transistors

- MEMS Extraction
 - Recognizes layer overlaps, gaps and geometrical features
 - Springs, plates, comb drives

Design Representations

- 3D Representations
 - Solid Model
 - Mesh
 - Original Design Entry Mode

(c. Carnegie Mellon)
Design Representations

- 3D Representations
 - Solid Model
 - Mesh
 - Original Design Entry Mode
- Layout
 - VLSI fabrication
 - Preferred Design Entry Mode

Design Representations

- 3D Representations
 - Solid Model
 - Mesh
 - Original Design Entry Mode
- Layout
 - VLSI fabrication
 - Preferred Design Entry Mode
- Behavioral Schematic

Module resonator(vin):

```vhdl
--
parameter real K = 1;
parameter real B = 1e-7;

analog begin
  Pos(Vtop) <+ ddt(Pos(top));
  Pos(Atop) <+ ddt(Pos(Vtop));
  Fe = (V(vin)*V(vin))*area*`eps0/2.0/
      (z0-Pos(top))*(z0-Pos(top));
  F(top) <+ Fe -
         (K*Pos(top) + ms*Pos(Atop) +
          B*ddt(Pos(Vtop)));
end
endmodule
```
Design Representations

- 3D Representations
 - Solid Model
 - Mesh
 - Original Design Entry Mode
- Layout
 - VLSI fabrication
 - Preferred Design Entry Mode
- Behavioral Schematic
- Circuit-level Schematic
- One-on-One Correspondence to Layout

Design Representation Links

Schematic-Driven Layout → Extraction → Circuit-Level Simulation → Schematic-Driven Mesh → Continuum Simulation → Mesh Generation → To Fab

- Continuum Simulation
- Mesh Generation
- Extraction
- Circuit-Level Simulation
- Schematic-Driven Mesh
- Schematic-Driven Layout

- Plate
- Beam
- Comb
MEMS Design Issues

- Will it meet specifications?
 - Dynamic range
 - Sensitivity (parasitics)
 - Sensor resolution (noise)

- Adverse interaction with Interface circuits?
- Electromechanical feedback systems stable?
- Design for manufacturability, testability
 - minimize sensitivity to variations
 - account for device calibration

\[\sqrt{F_n^2} = \sqrt{4k_BT B \Delta f} \]

Brownian noise

e.g.

Can we answer the design questions?

- Develop a solid model of the geometry
- Mesh it
- Simulate via Finite Element/Boundary Element

Figures courtesy D. Ramaswamy and J. White, MIT (Transducers '99).
3-D Electrostatic and Elastostatic Solvers

- **Electrostatics**
 - Accelerated Boundary-Element Methods (FastCap derivatives)
 - Computes charge distribution given potentials
 - Analyzes whole comb drives in minutes
- **Elastostatics**
 - Nonlinear Finite Element Analysis
 - Computes structure deformation given applied pressure
- **But,**
 - Charge distribution applies pressure on structure
 - Structure deforms, altering the field,
 - Hence charge distribution changes

Coupled Electromechanical Solvers

- Available from: ANSYS, CFDRC, Coventor, Intellisense, ...
 - Relaxation scheme with black-box solvers
 - Or, directly couple the solvers
- Can add more energy domains
 - e.g., thermal, fluidic

![Diagram](carnegie-mellon.png)
Behavioral Modeling ("Macromodeling")

- Low-level physics-based numerical simulation becomes impossible for large problems
 - Simulations are slow and memory intensive
 - Mixed-energy domains ⇒ coupled simulation
- Solution is to partition problem
- Generate analytic equations (explicit equations or ODE’s) for use in higher-level behavioral simulation
- Curve-fit using user-selected basis functions
 - e.g., polynomials, physics-based functions

Bottom Up Design Methodology
MEMS Design Hierarchy

System
- interface circuitry

Device
- transresistance amplifier

Functional element
- op-amp
- plate mass
- spring
- comb sensor

Atomic element
- transistor
- R,C
- plate
- beam
- anchor
- gap

Inertial system

Top Down Design for MEMS

- Methodology for interoperability of models at all levels
- Emphasis on reusable, parametric models
MEMS Model Hierarchy

System models
- Increasing complexity
- Decreasing reusability
- Increasing design cycle time

Device models

Functional element models

Atomic element models

Outline

- MEMS Design Issues
- Process & Design Abstractions
- MEMS Circuit Level Modeling & Simulation
- Layout Generation
- Layout Verification
- Mesh Generation
- Synthesis
- Summary
Circuit-level Modeling

- Models must be
 - Accurate
 - Analytical or ODE representation (lumped)
 - Correct energy conservation and dissipation
 - Models static and dynamic behavior
 - Easy to connect to system-level simulators

- Analog HDLs encodes of models for simulation

- System designer wants design flexibility
 - Identify generally useful components
 - Parameterize components for reuse

Prior/Current Efforts

- NODAS – CMU
 - J. Vandemeer, et al., ASME IMECE’97
 - Licensed to Coventor and MEMSCAP
 - Models in MAST with simulation in Saber
 - Models in VerilogA with simulation in Cadence

- SUGAR – UC Berkeley
 - Models directly in matrices with simulation in Matlab

- ARCHITECT – Coventor
 - G. Lorenz, et al., MSM’98 (originally with R. Bosch)
 - Models in MAST with simulation in Saber
 - Models in VerilogA with simulation in Cadence

- MEMSMASTER – MEMSCAP
 - D. Mouliner, et al., DTIP’01
 - Models in VerilogA with simulation in Cadence
 - Models in Eldo with simulation in Mentor Graphics
Simulation Methodology in NODAS

- Schematically compose structures
- Embedded in commercial EDA tools (Cadence, VerilogA)

![Comb-finger actuator diagram]

\[\begin{align*}
x_a & \\
y_a & \\
\phi_a & \\
v_a & \\
\end{align*} \]

BEAM
\[\begin{align*}
L = 10 \mu m \\
w = 2 \mu m \\
\phi = 0 \\
\end{align*} \]

![Comb-finger sensor and shuttle mass]

Output circuit
Resonant direction
Electrostatic comb drive
Input circuit

Behavioral Circuit Modeling

- Models are coupled only through elements’ I/O pins
- e.g., beams and plates are modeled as lumped mass-spring-damper systems

\[
\begin{align*}
dy & = \cos \phi_c \cdot \text{Pos}(y_p, y_m) - \sin \phi_c \cdot \text{Pos}(x_p, x_m); \\
F_{yp} & = m_s/420 * (6*(13*1e6*Aphim-22*1e6*Aphip) \\
& + 54*Aym+156*Ayp)) + dampy*Vyp \\
& + 12*E*Iz/(L*L*L) * (dy - 1e6/2*L*chip_phi); \\
F_{chip_{yp}} & = F_{yp} \cdot \cos \phi_c + F_{xp} \cdot \sin \phi_c; \\
F(y_p) & \leftarrow -F_{chip_{yp}}; \\
\end{align*}
\]
NODAS

- **NOdal Design of Actuators & Sensors**
- **Elements (symbols and models) can be reused in new designs**

Simulation

- **Behavioral simulation in Analog Artist, Spectre**
Simulation

- Behavioral simulation in Analog Artist, Spectre
- All analysis modes available:
 - dc
 - ac
 - parameter sweep
 - Monte-Carlo
 - transient
Mixed-Domain Design Example 1: MEMS Bandpass Filter

Principle of operation:

\[V_{out} = \frac{V_{in}}{Q} \]

\[\omega = \sqrt{\frac{K}{M}} \]

NODAS MEMS Circuit

Equivalent Linear SPICE Circuit

Q. Jing et al., MEMS 2000
K. Wang et al., MEMS 1997
\[c. \text{Carnegie Mellon} \]
Mixed-Domain Design Example 1: CMOS-MEMS Bandpass Filter

- NODAS Schematic

- SEM of fabricated device

- NODAS vs. Experiment

Capacitive Accelerometer Basics

- Interface Circuit
- Layout
- Output Waveform
Mixed-Domain Design Example 2: Lateral Accelerometer

- **Layout:**
 - plate mass
 - meander spring
 - capacitive sensor

- NODAS schematic:

![NODAS schematic](image)

Mixed-Domain Design Example 2: Manufacturability Simulation

- **Identical beam widths:**
 - cross-axis sensitivity = 0

- **5% mismatch:**
 - cross-axis sensitivity ~ 10^{-3}

- Transient analysis can be used to predict some failure modes

![Transient analysis graphs](image)
MEMS Circuit Representation: Cantilever Beam Example

Physics:

- Anchor:
 - $X = X_1$
 - $Y = 0$
 - $\Theta = 0$

- Beam:
 - $L = 100 \mu m$
 - $w = 2 \mu m$
 - $\Theta = 0$

- Across variables: displacement, angle, voltage
- Through variables: force, moment, current
- Branch relations: $\sum i = 0; \sum F = 0; \sum M = 0$

Nodal Conventions

- Across variables (x, y, θ_z displacement, voltage)
 - Positive valued displacements are in positive axial direction
 - Positive valued angles are counterclockwise around axis

- Through variables (F_x, F_y forces, M_z moment, current)
 - Force flowing into node acts in positive axial direction
 - Moment flowing into node acts counterclockwise around axis

Example: beam in tension

Equivalent schematic:
Behavioral Circuit Modeling

- Primary assumption is that element models are coupled only by nodes
- Beams and plates are modeled as mass-spring-damper systems driven at discrete positions corresponding to the nodes
 \[
 [F] = [m] [\ddot{x}] + [B] [\dot{x}] + [k] [x]
 \]
 \[
 [x] = [x_a \ y_a \ \theta_a \ x_b \ y_b \ \theta_b]^T
 \]
- Electrostatic gaps are modeled as capacitors with moving electrodes
 \[
 C = \frac{\varepsilon_0 A}{g([x])}
 \]
 \[
 [F] = 0.5 V^2 \frac{dC}{d[x]}
 \]
- Implemented in Analogy MAST/Saber and Cadence Verilog-AHDL/Spectre

Sources of Geometric Nonlinearity I: Large Axial Stress Stiffening

- Example: Fixed-fixed beam
- Beam nonlinearity starts at small displacement
- Effective beam length, \(L' \)
- Axial force, \(N \)
Sources of Geometric Nonlinearity II: Large Geometric Deflection

- Example: Cantilever beam
- Beam foreshortening, x and y are coupled
- Force projection into axial stress
- Cubic shape function valid only for small deflection
 - FEA: incremental loading & coordinate update
 - NODAS: coordinate transformation

![Diagram showing effective beam length, L'.]

Effective Beam Length, L'

Calculation of L' based on cubic-shape function

\[y(x) = f_1(x) y_a + f_2(x) \phi_a + f_3(x) y_b + f_4(x) \phi_b \]

\[L' = \int ds = \int_{x_a}^{x_b} \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \, dx \]

\[\delta L = L' - L \]

(f_i(x): cubic shape functions for small displacements)
Axial Force, N

- Geometric stiffness matrix, $[K_G]$
- Calculation of axial force, N

$$\begin{bmatrix} F \end{bmatrix} = \begin{bmatrix} K_0 + (K_G(x)) \end{bmatrix} \begin{bmatrix} x \end{bmatrix}$$

$$N(x) \cdot [K_{G0}] = \begin{bmatrix} N \end{bmatrix} = \frac{EA}{L} (x_k - x_b)$$

Geometric stiffness matrix

Modified to:

$$N = \frac{EA}{L} \delta L$$

Ref: Przemieniecki, Theory of Matrix Structural Analysis, 1968

Coordinate Transformations

- Chip frame: specifies layout position
- Local frame: specific to each element
- Displaced frame: shape functions are applied
Dynamic Rotation

- Displacements in local frame are large
- Displacements in displaced frame are small
- Averaging rotations at node a and node b

\[
X_{\text{local}} \quad Y_{\text{local}} \quad X_{\text{disp}} \quad Y_{\text{disp}}
\]

Rotation angles in local frame

\[
\phi_x = \frac{(\phi_{ax} + \phi_{bx})}{2} \\
\phi_y = \frac{(\phi_{ay} + \phi_{by})}{2} \\
\phi_z = \frac{(\phi_{az} + \phi_{bz})}{2}
\]

Rotation About an Axis

- General, unique definition

Axis of rotation

\[
\phi = \sqrt{\phi_x^2 + \phi_y^2 + \phi_z^2}
\]

Used to form rotation matrix

\[
\begin{align*}
 p_x &= \frac{\phi_x}{\phi} \\
 p_y &= \frac{\phi_y}{\phi} \\
 p_z &= \frac{\phi_z}{\phi}
\end{align*}
\]

Ref: Glassner, Graphics Gems, 1990
Beam Model Structure

$$\begin{align*}
\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}_{\text{chip}} & \quad \text{KVL: } \sum_{i=1}^{n} x_{i, \text{chip}} = 0 \\
\end{align*}$$

- **In chip frame:**
 - System matrix is built by the simulator (Spectre)
 - Self-consistent solution satisfying KCL and KVL is solved based on network topology

$$\begin{align*}
\begin{bmatrix} x_{\text{local}} \\ \dot{x}_{\text{local}} \end{bmatrix} & \rightarrow \begin{bmatrix} x_{\text{disp}} \\ \dot{x}_{\text{disp}} \end{bmatrix} \rightarrow \begin{bmatrix} F_{\text{disp}} \end{bmatrix}_{\text{disp}} = \left[K \left(x_{\text{disp}} \right) \right]_{\text{disp}} \begin{bmatrix} x_{\text{disp}} \end{bmatrix}_{\text{disp}} \\
\end{align*}$$

$$\begin{align*}
\begin{bmatrix} x_{\text{local}} \\ \dot{x}_{\text{local}} \end{bmatrix} & \rightarrow \begin{bmatrix} F_{\text{local}} \end{bmatrix}_{\text{local}} = \left[B \begin{bmatrix} \dot{x} \end{bmatrix}_{\text{local}} \right]_{\text{local}} \\
\end{align*}$$

$$\begin{align*}
\begin{bmatrix} x_{\text{local}} \\ \dot{x}_{\text{local}} \end{bmatrix} & \rightarrow \begin{bmatrix} F_{\text{local}} \end{bmatrix}_{\text{local}} = \left[m \begin{bmatrix} \dot{x} \end{bmatrix}_{\text{local}} \right]_{\text{local}} \\
\end{align*}$$

$$\begin{align*}
\begin{bmatrix} F_{\text{chip}} \end{bmatrix}_{\text{chip}} & \rightarrow \sum_{i=1}^{m} F_{i, \text{chip}} = 0 \\
\end{align*}$$

Outline

- MEMS Design Issues
- Process & Design Abstractions
- MEMS Circuit Level Modeling & Simulation
- Layout Generation
- Layout Verification
- Mesh Generation
- Synthesis
- Summary
Symbol Library

- Low-level elements are:
 - Anchor
 - Beam
 - Plate
 - Gap
 - Comb

Layout Generation

- Automated layout is hierarchically p-cell (parameterized cell) driven directly from elements
Layout Generation Example

- Connectivity derived from schematic

Outline

- MEMS Design Issues
- Process & Design Abstractions
- MEMS Circuit Level Modeling & Simulation
- Layout Generation
- Layout Verification
- Mesh Generation
- Synthesis
- Summary
MEMS Extraction for Layout Verification

- Recognizes layer overlaps and gaps
- Capacitors, resistors and transistors
- Recognizes layer overlaps, gaps and geometrical features
- Springs, plates, comb drives

Previous Work

 - Limited to hierarchical connectivity analysis
 - Verifies pin to pin connectivity of tagged layout
- Does not allow manual layout generation
- Fails to capture parasitics in the integrated layout
Extraction steps

- Input layout geometry
- Canonical representation
- Recognize atomic elements
- Detect functional elements
- Generate schematic

Eg: Folded Flexure Resonator

- Input layout
- Canonical representation
- Atomic elements recognized
- Final extracted netlist
- Simulation using component models
Effect of Mechanical Parasitics

- Layout from layout-generator
- Layout after putting in extra metal in plate

MEMS Parasitics

- Electrical
 - As in VLSI

- Electromechanical
 - Parasitic from released structure to substrate

- Mechanical
 - Metal routes cause additional mass
 - 43% holes, 57% m3, 34.2% m2, 35.91% m1
MEMS Parasitics

- **Mechanical**
 - Joint between beams
 - L: 100μm, w: 2μm
 - L: 100μm, w: 2μm
 - L: 100.6μm, w: 2μm
 - L: 100μm, w: 2μm
 - L: 100μm, w: 20μm
 - L: 2μm, w: 20μm

Extraction Flow

- done using commercial VLSI extractor
- input layout
- separate regions
 - partition MEMS domains
 - extract fluidic MEMS
 - fluidic MEMS schematic
 - extract electrical parasitics in MEMS
 - electrical parasitics in MEMS
- technology library file
- integrated extracted schematic
- stitch schematics
- circuits region
 - extract electrical parasitics in non MEMS areas
 - electrical circuit with parasitics
- extract fluidic MEMS
- extract suspended MEMS
- suspended MEMS schematic
- extract electrical parasitics in MEMS
- electrical parasitics in MEMS
- master extractor
- MAST ER E X T R A C T O R
CMOS-MEMS Extraction

Problems
- Multilayer structures
- Etch holes
- O(n^2) algorithms will be too slow

Solutions
- Hierarchical bin representation for storage
- Scanline-based algorithms

More flexibility with electrical connectivity
- O(n^2) connectivity algorithms will be too slow
- Freedom to design complex types of springs and comb drives

Mechanical and electrical parasitics
- Parasitic mass and joints
- Circuit parasitics
- Parasitic capacitances effecting comb drive

Hierarchical bin representation

- Layers in canonical form
- Merged layer (MEM layer) + gap layer form bins
- Atomic recognition done on bins
- Merged bins form superbins
- Unrecognized empty bins discarded from superbins
- Functional level recognition done on superbins

B. Baidya et al., MSM 2001
Canonical Representation

- Unique representation for any given layout geometry
- Minimum rectangles covering area between mutually visible parallel edges
 - Non Manhattan geometry will have rectangles and polygons
 - Manhattan geometry will have only rectangles
- Unique neighbor on each edge of resulting polygons and rectangles

![Diagram of canonical representation]

Canonization for Manhattan Geometry

- Simplification possible
 - Only two possible angles
 - Direction of edge can be used to predict its location
 - Final representation has only rectangles
- Only one scan
 - Using only vertical edges
 - Sorted w.r.t x coordinate, y coordinate and direction
 - Scanline drags boxes associated with its edges
 - New edge completes boxes that can be reached on scanline
 - Separate polygonization phase not required
- Simpler and faster than the generalized algorithm
 - Time for creation of boxes = $O(n)$, n: final # of boxes
 - Time in operation = $O(\text{elgm})$, e: # of edges, m: expected # of elements in scanline $\sim O(n^{0.5})$
Canonization Algorithm (Manhattan) : Example

- a,b inserted
- c inserted
- box 1 completed
- box 2 dragged
- d inserted
- box 2 completed
- e inserted
- all boxes completed

Canonization (Manhattan): Example

- folded flexure resonator (using only one structural layer)
- canonized layout (>500 rectangles)
Canonization (Manhattan): Example

- CMOS accelerometer (3 metal layers)
- Canonized layout (~50,000 rectangles)

Z-accelerometer: Parasitic Joints

- Parasitic joints between short beam
- Width of beam comparable to size of joint
- Extracted schematic of quarter layout
- Layout
Example of Integrated Extraction: Accelerometer

c. Carnegie Mellon

c. Carnegie Mellon
Example of Integrated Extraction: Gyroscope

- Gyroscope
extraction

- Displacement in drive mode
- Displacement in sense mode
- Input rotation

- Output sense voltage of circuit
- Output voltage for common centroid topology (~2μV p-p)
- Output voltage for original topology (~2mV p-p)

- Cross axis coupling at zero external rotation

c. Carnegie Mellon
Example of Integrated Extraction: Filter

- Extracted schematic matches experimental results more than designed schematic

Context-Dependent Verification

- As in analog VLSI
 - Symmetry is extremely important in MEMS
 - Asymmetry induces mode coupling
 - Noise
 - Common Mode
- Manual interconnections can affect design
- What should be symmetric to what?
 - Easily verified by layout extraction to schematic
Outline

- MEMS Design Issues
- Process & Design Abstractions
- MEMS Circuit Level Modeling & Simulation
- Layout Generation
- Layout Verification
- Mesh Generation
- Synthesis
- Summary

Intelligent Mesh Generation

- Canonical Representation \Leftrightarrow minimal mesh
- Multi-layer CMOS-MEMS mesh generator
 - Recognizes beams, plates, and meshes appropriately

e.g., electrothermal actuator
Curl in CMOS Accelerometer

- anchor
- comb
- rigid frame
- anchor axis
- curl matching

Schematic-Driven Mesh

- Integrates Schematic-To-Layout with Layout-To-Mesh
 - Schematic Source elements become Boundary Conditions

- DC Force
- Anchor
Rigid Elements in MEMS

Proof Mass exhibits rigid behavior

- Treat bulk as a Rigid Body with only 6 degrees of freedom, 3 Euler angles of rotation and 3 displacement variables

Figures courtesy D. Ramaswamy and J. White, MIT (Transducers ‘99).

c. Carnegie Mellon

Rigid Elastic Formulation

Figures courtesy D. Ramaswamy and J. White, MIT (Transducers ‘99).

c. Carnegie Mellon
Outline

- MEMS Design Issues
- Process & Design Abstractions
- MEMS Circuit Level Modeling & Simulation
- Layout Generation
- Layout Verification
- Mesh Generation
- Synthesis
- Summary

Optimization-based Synthesis

- Design modeling
- Design Optimization
- Design Variable
- Objective
- Device Performance
- Evaluation
- Valid Designs
- No Valid Designs
- Specifications
 - Sensitivity > 20mV/g
 - Noise < 0.1mg/rtHz
- Objective
 - Minimize Area
 - Maximize Range
- Layout Generation
 - Min Area
 - Max Range
- Lumped Parameter Models
- Process
- Manufacturing Variable
- Topology
- Specifications
 - Sensitivity > 20mV/g
 - Noise < 0.1mg/rtHz
Synthesis Approach

Optimization Problem:

\[
\begin{align*}
\text{minimize} & \quad \text{objective}_\text{function}(X) \\
\text{subject to} & \quad I \leq \begin{bmatrix} X \\ A_{\text{linear}}X \\ c_{\text{non-linear}}(X) \end{bmatrix} \leq u
\end{align*}
\]

Optimization Strategy:
gradient based constrained non-linear optimization

Uses:
» Multiple grid point sampling for initial start-point
» Sequential Quadratic Programming (Lagrange-Newton Method)
» Branch and Bound for integer valued variables
Variables: Plate-mass/Comb-drive

- $W_{\text{stator-finger}}$
- G
- G_1
- L_{finger}
- $W_{\text{rotor-finger}}$
- V_{m+}
- V_{m-}
- W_{pmass}
- L_{pmass}
- L_{beam}
- W_{beam}
- W_{truss}
- L_{truss}
- $W_{\text{connect beam}}$
- $L_{\text{connect beam}}$
- p_{mass}

Low Cross-axis Sensitivity \Rightarrow spring symmetry (w.r.t. x axis)

Symmetry \Rightarrow #(truss beams) = ODD

\Rightarrow Use a Thick Connecting Beam

\Rightarrow Constraint: $K_{\text{connect beam}} \geq 10^4 K_{\text{spring}}$
Synthesis: Functional Constraints

- Sensitivity \((slope) > spec\)
- Noise \((resolution) < spec\)
- Offset \(\sim 0\)
- Range \(> spec\)
- Cross-axis sensitivity \(< spec\)
- Bandwidth \(> spec\)

\[\omega_{\text{comb-finger}} < \omega_{\text{modulation voltage}}/1.5\]

\[Sens = \frac{(C_1^0 + C_2^0)}{C_1^0 + C_2^0 + C_{\text{para}}} \frac{m}{k_1} V_g\]

\[Noise = \sqrt{\left(\frac{4k_1 TB}{m}\right)^2 + \left(\frac{\nu_{\text{noise-clk}}}{\text{Sens}}\right)^2}\]

Synthesis: continued

Geometrical Constraints
- Area restrictions
 \((2L_{\text{finger}} + W_{\text{mass}} < X_{\text{size}} < 270 \mu m)\)
- Process design rules
 \((\text{minimum M3 gap} = 0.9 \mu m)\)
- Relative size constraints
 \((\text{e.g., all comb-units must fit on the plate-mass})\)
- Gap constraints for mechanical release
 \((\text{thicker structures need more space around them})\)

Optimization Objectives
- Minimize Noise
- Maximize Sensitivity
- Minimize Area
Synthesis vs. Manual Design

Specifications:
Sensitivity = 0.5 mV/G
Noise ≤ 83 µG/rtHz
Area ≤ 270x500 (µm)²

Optimizes spring design to obtain same sensitivity with less mass & area

<table>
<thead>
<tr>
<th></th>
<th>Manual Design</th>
<th>Minimal Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring Constant</td>
<td>1.56 N/m</td>
<td>0.63 N/m</td>
</tr>
<tr>
<td>Mass</td>
<td>0.56 µg</td>
<td>0.38 µg</td>
</tr>
<tr>
<td>Gap</td>
<td>1.5 µm</td>
<td>1.65 µm</td>
</tr>
<tr>
<td>Area (used)</td>
<td>100%</td>
<td>79%</td>
</tr>
</tbody>
</table>

Synthesis: Maximal Sensitivity

<table>
<thead>
<tr>
<th></th>
<th>Spec</th>
<th>Obtd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity(mV/G)</td>
<td>>0.5</td>
<td>1.97</td>
</tr>
<tr>
<td>Range (G)</td>
<td>>50</td>
<td>70</td>
</tr>
<tr>
<td>Noise (µG/rtHz)</td>
<td><100</td>
<td>100</td>
</tr>
<tr>
<td>Area ((µm)²)</td>
<td><270x500</td>
<td>100%</td>
</tr>
</tbody>
</table>

Gap = 1.5 µm (= min value)

\[w_o = 5 \text{ kHz} \]

\[\text{Limited by area specification} \]
Synthesis: Minimal Noise Objective

<table>
<thead>
<tr>
<th>Spec</th>
<th>Obtd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity (mV/G)</td>
<td>>0.5</td>
</tr>
<tr>
<td>Range (G)</td>
<td>>50</td>
</tr>
<tr>
<td>Noise (µG/rtHz)</td>
<td><100</td>
</tr>
<tr>
<td>Area (µm²)</td>
<td><270x500</td>
</tr>
</tbody>
</table>

Gap = 2.6 µm (min value is 1.5 µm)
⇒ Squeeze film damping dominant
over other forms of damping

⚠️ Limited by sensitivity specification

Sensitivity vs. Noise Trade-off Analysis

Noise = \sqrt{\frac{4k_BT}{m}} + \left(\frac{V_{meas} - \text{ref}}{\text{Sens}}\right)^2

To right of minimum:
FingerGap ↓ ⇒ Damping ↑ ⇒ Mechanical Noise ↑

To left of minimum:
FingerGap ↑ ⇒ Mechanical Noise ↓, Also Sensitivity ↓ ⇒ Electrical Noise ↑
More MEMS CAD Needs

- Answering additional questions
 - Noise
 - Thermomechanical drift
 - Stress
 - Manufacturing defects

- Design application areas with new physics
 - Optical manipulation
 - Optical
 - Biochemical systems
 - Chemical
 - Fluidic

Conclusions

- Multi-view, multi-level, multi-physics, multi-process design methodology
 - Ability to handle increased complexity
 - Increase in design reuse
 - Decrease in time to working designs
 - Reduction in design errors
 \[\Rightarrow\] Reduce the Design Productivity Gap

- Need
 - Systematic method for process parameter extraction
 - Designer Education
Acknowledgements

- Prof. Gary Fedder
- Several Students & Staff at Carnegie Mellon MEMS Lab
 - B. Baidya, V. Gupta, K. He, S. Iyer, Q. Jing, H. Lakdawala, S. Vemuri, W. Wojciak

- Funding
 - DARPA Composite CAD & MEMS Programs
 - National Science Foundation