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Course Objectives

¥

Understand how MEMS are designed

Understand some of the computational techniques that go into
the development of MEMS simulation tools

\4

=  Specific examples: electrostatic MEMS, microfluidics
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Outline

=» Some MEMS Examples

» Mixed-Domain Simulation of electrostatic MEMS and
microfluidics

= Techniques for interior problems (e.g. FEM)
= Techniques for exterior problems (e.g. BEM)
=  Algorithms
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Pressure Sensor
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= Applications
= Biomedical (e.g. blood pressure)
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Accelerometer
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Analog Devices' ADXL-50, the industry’s first surface micromachined
accelerometer, includes signal conditioning on chip.
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Micro Mirror

A

Suconsibstrate  Misror landing “ﬂ”";ﬁm‘"ﬂ‘f

elochrode

= Applications
= High performance projection displays
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Some MEMS Examples

Mixed-Domain Simulation of electrostatic MEMS and
microfluidics

= Techniques for interior problems (e.g. FEM)
= Techniques for exterior problems (e.g. BEM)
=  Algorithms

Dynamic Analysis
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Is Electrostatics a good idea?
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Scaling Laws

= Useful to understand where macro-theories start requiring
corrections with the aim of better understanding the physical
consequences of downscaling

= Develop an understanding of how systems are likely to behave
when they are downsized

= Examples

= By reducing the size of a device, the structural stiffness generally
increases relative to inertially imposed loads

=»  The mass or weight scales as I3, while the surface tension scales as 1 as
the system size becomes smaller

=  More difficult to empty liquids from a capillary compared to spilling
coffee from a cup because of increased surface tension in a capillary

=»  Heat loss is proportional to 1>; Heat generation is proportional to I3;
As animals get smaller, a greater percentage of their intake is
required to balance heat loss; Insects are cold blooded
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Scaling in Electrostatics

Distance L Friction [2
Velocity L van der Waals J5li
Mass X Time B
Gravity L2 Muscle force I~
Surface Tension |L Power 5
Electrostatic force | L? Torque L3

A
v

Consider a capacitor

The electrostatic P.E. stored in ;
a capacitor is: o g6,V

e,m 2 d 7
V, = electrical breakdown voltage »

x
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Scaling in Electrostatics

Assume V/, scales linearly with d (the gap)

I°r'r
—- -~ " _y 1 The maximum energy stored in the capacitor scales
e,m 1
’ / as L2

If L decreases by a factor of 10, the stored energy in
the capacitor decreases by a factor of 1000

E

Electrostatic Force

o(1 o (1 0(1
F.=——|=-CV’ o v’ F =——|-CV?
2 07\ 2
Electrostatic force scales as L2; This is an advantage
because mass and inertial forces scale as L3; The

7 2
s 7 — 1 electrostatic force gains over inertial forces as the size of
the system decreases
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Scaling Laws: Vertical Bracket Notation

Different possible forces can be written as

(l 1. case where the force scales as L!
e I’ ; case where the force scales as L2
=13
s a:E:[lF][1—3]:1F—3 L DU R
m F
AE
V, W R i
(1) (l_z\ rl3/2\ rl—2.5
] ]! l P -1
F=<l3>—> a=<lo> t=<l%> ?=<;05>
A ' 1 3 o
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Scaling Laws: Remarks

=» Even in the worst case when F = L4, the time required to
perform a task remains constant when the system is scaled
down

=»  Under more favorable force scaling (e.g. F = L?), the time
required decreases as L. (a system 10 times smaller can
perform an operation 10 times faster i.e. small things tend to
be quick)

il P 3
For Electrostatics  [F = [? oo L e S L S S
0

=  When the force scales as F = L2, the power per unit volume
scales as L => When the scale decreases by a factor of 10, the
power that can be generated per unit volume increases by a
factor of 10
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v Some MEMS Examples

» Mixed-Domain Simulation of electrostatic MEMS and
microfluidics

1=  Techniques for interior problems (e.g. FEM)
= Techniques for exterior problems (e.g. BEM)
=  Algorithms
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Elastostatics

®» Finite-difference methods
®»  Finite-element methods
®» Meshless methods

Computational MEMS/NEMS Beckman Institute 1’[ University of lllinois at Urbana-Champaign




Finite Element Method: Introduction

Key steps in FEM:

*Construct a weak or a variational form of the
problem

*Obtain an approximate solution of the variational
equations through the use of finite element
functions
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1-D Example: Strong and Weak Forms

« Strong form u_+f=0 0<x<lI (S)

u(l)=gq Dirichlet B.C.

—u (0)=h  Neumann B.C.
 Trial function 8={u|u€H1,u(1)=Q}

*Test function (or weighting functions) v={w|weH" ,w(l)=0)}

1
* Derive weak form jw( u,. + fldx=0
0
L 1 1
* Integrate by parts wi ;_ J‘ W, s j‘ w fdx =0
0 0
Weak form 1 1
I w u dx= I wfdx+w(0)h (W) ()= (W)
0 0
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1-D Example: Galerkin Form

1 1
*Notations: a(w,u)= J‘w’xu’xdx (w’f) = wadx

0 0
*The weak form can be rewritten as a(w,u)=(w, f)+w(0)h

 Galerkin Approximation Method

u" €d”
w" ev”
Galerkin form a(w" u" )=(w", f)+w"(0)h (G)
N N
Apply the w'=3'N,C, u"=7% Ny,
interpolation 5= B=1

a(ZN: NACA,ZN:NBdBJ = (EN: N ,C,, fj+f:NA (0)C ,h

A=1
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1-D Example: Matrix Form

N
>,

A=1

N
{Z jQ N, N, dQd, - jg N, fdQ- N, (0)h} —0

B=1

C,’s are arbitrary, so

N
ZIQ N N, AQdy = jﬂ N, fdQ+ N ,(0)n for A=1,2,...,N
B=1

where
N
> K, d,=F, for A=1,2,...,N
B=1
Ky=| N, NydQ  F,=| N, fdQ+N,(0)h
The matrix form Kd=F

(M)
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1-D Example: Matrix Form

g Bl B K,y
| S
Ky Ky, Ky _
X F B 4 5 L
F={F)=| d={d,}=|
| Py | dy
Remarks:

« K is symmetric;

* For any given problem, (S ) = (W) ~ (G) & (M )
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Shape Functions

1
N 52 XA+
(x—x
A-1
Shape functions h y X SXSX,
A-1
_JXu— X
‘NA("C)_< h y X SXSX,,
4
0 , otherwize
\
e e g X X
N,(x)— e x, <x<x, NN(x)= h T X <R
1 N-I
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Local/Element Point of View

For a linear finite element

Domain

Nodes

Degree of freedom

Shape functions

Interpolation
function

h(x)z NA(x)dA *

global local
ENE I e
EFE I s
d,d,.} {d,.d,}
NoN,) (N,,N,)

u" (&) =N, (&)dz

NA+1 (x)dA+1 B NZ (g)dZ
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* Local Shape function N, (&) = %(1 i E)ag)
7 1
N1=5(1—§) N2=3(1+§)
where Zj,(x)= Ll s
h,
e h’ X —xe e e ! 2
x&—2= 221 & s z(xé):f

a=1

* Derivative of the Shape function
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Matrix Assembly

nel
« Global stiffness P Z K°¢ K° = [K eAB]
e=1
nel
* Force vector F=ZFe F* =[FeA]
e=1

where K = a(NA,NB )e = er N, Ny . dx
Feu=(N,f)+N (0
where Q° = [xe 15K, 2] is the domain of the e-th element

Kow=[ N, (N, (x)x

=[N, (@), (xE) e = [N, N, (x, )" de

local stiffness ; 4 I Eol T =
K==
he| -1 1
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example

10. 1.1 1.2
(R i)

Assembly Process

local stiffness

K(l) bl

Global stiffness

LR o 1
W[—z 1} o
D, @
) el @0 i

10 11 12

10
11
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FEM: Multidimensional Problems

Divergence theorem J;) S dQ = §r Sfndl

Integration by parts IQ f;8dQ = ﬁ gf nidl_' — .[Q Jg . dQ

Heat Conduction

Strong form: given  f:Q >R, g:I', >R, h:I, >R

find u:Q—->R such that
4, =f inQ
u=g onl,
—q.n,=h onl,
where q,=—K,u K; are the conductivities
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Weak Form: Heat Conduction Problem

JQ w(qi,i = f)dQ =0
L wq.n,dl’ —IQ w .q,dQ — Lz wfdQ =10
Apply the property of the weighting function w=0 on Fg
[ wq,dQ =] wfdQ+ | whdl

Notation: a(w, u) - jg w . K.u .dQ

sl

(w, )= wfdQ  (w,h). = [ whdr

* Weak form a(W, ll) A (W: f)"‘ (W’h)r,,

* Galerkin form a(wh,uh)= (wh,f)+ (wh,h)l.h
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Heat Conduction Problem: Matrix Form

Substitute the 50 48y
interpolation Weee Z N,C, T Z Nydy
A=1 B=1

N N N N
a[z N Y- NBdBJ = [Z N,C,, fj + [Z NACA,hJ
A=1 B=1 A=1 A=1

r

S alV N My = (Y, ) (),

B=1

* Matrix form Kd=F

where KAB:a(NA’NB)

F, :(NA’f)"'(NA’h)r
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FEM for Elastostatics

Strong form: given f;, g; and A;, find u, such that
c;;+fi=0 inQ
u,=8§; onl,

o;n;=h, onl,

The stress is related to the strain by Hooke’s law

Gy = Ciimu
. u,, +u;; )
Strain tensor i e St B u(l ])
y 2 1

.Lz w, (Gij’j R )dQ == —IQ w, 0,.dQ+ L w,o,ndl" + J;: w. f.dQ =10

* Weak form nsd

[ (i, jlod@= | w, fdQ+ 2% ( [ w,.h,.dr)
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FEM for Elastostatics

Why O = w(l J)Gy
rewrite W= w(i,j)+ w[i,j]
W+ W, :
where WAL T 5 & (symmetric)
w[i, Jj ]: ik ;Wj - (skew symmetric)
e, 0, = (wli )+l o,

= W(i,j)O'l.]. +w[i,j]0'ij
and W[l ] % :_W[J7l]az] > [j’i]aji :_W[i’j]aij

W[i,j]O'l.j. =0

So
w05 =wli, j)o,
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FEM for Elastostatics

Notation: a(w, u) = jg w(i, j)cijk,u(k,l )dQ

g k=5, o)

i=1
* Weak form a(w,u) = (w,f)+ (w,h)]. forallwey
* Galerkin form a(wh,uh)= (wh, f)+ (wh,h)r

w'=>N,d, i=123(3dofs)

A=1

* Matrix form

Kd=F
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Bilinear Quadrilateral Element

x(f,n)=gNa(§,n)Xf

Wem)=2 N, (&l
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Shape Functions

* Shape functions

N (Em)=7(1-€)i-n)
L +8)i-n)
§<1+5>(1+n>

( ~&N1+7)

Nz(éi??)

N3(§,77)

N,(&7)

Property of the shape function

nen

> N,(Em)= (= 2Ni=n)s (1 Y1) L (1 £ o) L (- £1 )

Il
ek
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Numerical Integration

Numerical integration

J:lg(éf)df :nzim:g(gl)wl +R Enzim:g(fz)wz

* Trapezoidal rule Heve2
51:_1 Wl—_—l 121,2
52 =+1
2 A
:_ggﬁ@)
 Simpson’s rule n. =3 W= W, =
Tring 4
¢, =0 g 5
53 =1 1 A7
LM i (4)
90 * g
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Gaussian Quadrature Rules

ol £=0 w=2
R:g,ﬁé(‘f)
3
3 : SAL 1
n. =2 R o
int 51 3 62 \/g
W1:W2:
-2V
135
SRR TN g
E =— x E,=0 &, = -
nint:3
W1:W3:§ 1/1}2:§
9 9
(6)( £
R_8 ¢
15750

Computational MEMS/NEMS I Beckman Institute University of lllinois at Urbana-Champaign




Gaussian Quadrature Rules in 2-D

sk
j-_11 I_II g(ﬁ, n)’édn ~ I_II { g: g(ggf)) ,‘r])wl((l,)) }dn
=1
nl) i
= lg;l D g (i% R 1152) )wl((’,)) wfé%

AT AT AT

+ 4

- s 25 W

d\:
d;‘:
++ +

<+ + 4+

examples

J:I J‘j g(&gdn = 42(0,0)

f]]f;g(ﬁm)d&dn = g(— \IE 5 j}j 5 g[ j} e \/lgj + g(% %j 2 g[— % %j
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Finite Deformation Elastodynamics

E3

Original

configuration

Transformation function X = (p(X)

A

=X

El

Deformation gradient

F=Do(X)=

op, O, O,
0X, 0X, O0X,
op, O¢, 0¢,
oX, 0X, 0X,
op, 0@y 0,
0X, 0X, O0X,

J(¢)= det[F]

»
»

E Deformed
2 .
configuration

dx=FdX

Volume transformation dv=JdV

Area transformation (d s)n =hh (d S)(FT )_1 N

1
Density transformation P = 7 o
Velocity v._oe
ot
1 Jix
Cauchy stress o= 7p F
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Elastodynamics: Governing Equations

Strong form:

o
Py aTZP = Div[P]+ p,B

where P-FS
S—cE  c=FF E:%[c—l]

* Boundary conditions:

@=g onl, at[O,T]
Ppn,=h on I, at|0,T]

 Initial conditions:

Qo= ¢ in Q
V], =V inQ
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FEM for Elastodynamics

* Weak form:
Glg.n)= [, Grad[n]:[DpS(E(9))ldV - | pB-ndV ~| n-hdr=0
* Galerkin form:

Glo".n")= Gradln’]:[De" 8" Jav - [ pB-n'av - jrh n"-hdl =0

Nonlinear equations: F(d)-F =0

Where

F"(d)=| B'Sav 7 = [ pBNdV+ _h-Nar
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Solution of Nonlinear Systems: Newton Methods

The scalar problem: r(d) is a scalar nonlinear function of d. Find 4 such that
r (67) =0

Possibilities:
4 AT A7
d d d
d di d-
one unique solution several solutions no solutions
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Newton’s Method

* Solution strategy:

Guess a “good” d, close to the solution;

= d 1 d°
rid)=rd,)+—r(d,+erd), , +——r(dy+erd) o +......
& 2 de’
r\d = r( 0)—|—% r(d, +8Adxg &
- {d,)+ K(d,JAd =0,
(d,) 3
Ad = -
- K(d,) A
d =d,+Ad

v

» Geometric interpretation
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Algorithm: Newton’s Method

i=0
di==dy
16 T | B, until convergence
if [r(d, | < tol
d=d,
else
Rgees = 2 (di)
i '(di)
d.=d +Ad
end if
end for

The error at the i-th iteration is given by Pl d, — d

if el ;

< C‘e(i)

then we say the algorithm converges with order k.

Newton’s method has quadratic convergence, i.e. k=2
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Modified Newton’s Method

Advantages of Newton’s method Algorithm: modified Newton’s method

» Optimal (quadratic) convergence e
close to solution
d, =d,
g =120 until convergence
Disadvantages of Newton’s method o+ ‘F(d,-)‘ < tol
* Poor or no convergence far away d=d,
from the solution; Slie
» Computation of K(d.) is very b (,)
expensive in the general r'(d,)
multidimensional case (K (d) is a d. =d. +Ad
matrix). Sl
end
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Newton Method: Multidimensional Case

Let R(d) be an-dimensional vector valued nonlinear function of the n-

dimensional vector d
=7 * Directional or Frechet derivative

R, :Rl(dladza ------ 9dn) dig(gmg)(g:o:vgg
e &
R2:R2(dl,d2, ...... ,dn) _aRl OR, %_( :
: : od, 0od, od, i
b : A : u,
= 4 >
i T R LR T ; R
OR OR OR, 7
| od, od, od, |
Similar to the scalar case
R(E)z R(d )+iR(d +gAd) +id—2R(d +gAd) e
R o e T A R ) T el S L e i
= R(d, )+ dig(do + gAQ}SZO
Pt e
— E(d 1 )-|- K., (d > )Ai =0 K, (@ ) is called the tangent stiffness matrix
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Newton-Raphson Method: Algorithm

n=20
— step loop (load stepping e.g)
i=0
i(i) =

—n

do (iteration loop)

KT(Q("))A 4" = _g¥

ext
— n+l

d(i+1) :d(i) +Ad(1)

i=i+1

until HB(M) < EHE(i)
d,,=d"
I ]

F int

— n+l

@)

Remarks:

» The load step is needed since the
method might not converge if the
entire load is applied at once. Instead
the load is applied incrementally.
Each increment is converged before
the next step 1s applied.

» Likewise one might have to apply the
“g” b.c.’s incrementally. This method
is called “displacement control”.

* In practice, the terminology “Newton-
Raphson method”is often used to
denote algorithms in which a new left
hand size matrix is formed for each
iteration. If KT is not updated in each
iteration, but kept frozen for a couple
of iterations, the term “modified
Newton” method is used.
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Outline

v Some MEMS Examples

» Mixed-Domain Simulation of electrostatic MEMS and
microfluidics

¢ Techniques for interior problems (e.g. FEM)
1=~  Techniques for exterior problems (e.g. BEM)
=  Algorithms
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BEM - Introduction

] What is Boundary Element Method ?

» Boundary discretization only
» Integral based method

Analysis of a turbine blade using FEM and BEM

1 Approaches available for solving boundary integral
equations

> BEM based on Collocation
» BEM based on Galerkin
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Comparison of FEM and BEM

FEM BEM

Local approach Global approach, Integral
based

Domain mesh Boundary mesh (1D/2D)
(2D/3D)
Symmetric, sparse and Unsymmetric, dense and
large matrices smaller matrices
Lot of commercial Fewer packages available
packages available
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Table 1

Problems | Scalar Dirichlet Neumann | Constant
(V'6=0) | function (¢ )|b.c. ($=¢) |b.c(k Z—d) =q) (&)
n
Heat Temperature I, Heat flow Thermal
Transfer (T = Deg .) (I=T) iy or _ g) | conductivity( j
on
Elastic Warping 2 t
torsion function (V) (¥ eost il ds) 2
Ideal fluid Stream function ks o0 )
flow ((I)EmZS_I) ((I):(I)) on 1
Electrostatic | Field potential 2. Electric flow | Permittivity
= (V=V) oV _ (¢)
(V =volt ) (—sa—=q)
Electric Electro- (E = E) |Electric ;. | Resistivity
conduction | potential (E=volY current G5, ()
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Boundary Integral Formulation

» Laplace equation represents many problems in engineering
(Table 1)

VT =0 inside

Temperature ‘7” known on the surface

V=0 outside

Potential ¢ known on the surface

Interior problem Exterior problem
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Boundary Integral Formulation

» BEM is based on the Second Theorem of Green

» Problem definition

Definition of the problem

" Governing equation:
VZ(I) = p(x) x e Q

= 0; Laplace

X
p(x) # 0, Poisson

" Dirichlet boundary condition (b.c):
o(y)=0(y) ¥eT,
" Neumann boundary condition (b.c):

op(x)
on

=q(y) R

xX=y
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Boundary Integral Formulation

Derivation of BIE:
Multiplying (V?’¢— p) with ¢* and integrating over €2

‘db— plhTdQ = o
[ (V2o-phrac=0 (1)
Integrating by parts we get (2D case),

[0'Vo-ndr —[ (Vo-V + po* hQ+ =0

Integrating by parts the second integral we get,
* * ] 3 *
[0'Vo-ndl [ oVo'-ndl +[ (0V?0' — po* HO =0

where n is the outward normal to the boundary I

Computational MEMS/NEMS Beckman Institute ;ITL University of lllinois at Urbana-Champaign




Boundary Integral Formulation

Therefore, Equation (/) can be written as,

[ [(vio-phraa= (4v¢" - ¢)m+j¢ a¢ dr = 0

n

> [ ok - @9 hha = [ 42 %"’*}” 99

(I)* is the Fundamental Solution of Laplace equation.
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Boundary Integral Formulation

Fundamental Solution ¢ * for Laplace equation :
> satisfies Laplace equation

» represents field generated by a concentrated unit charge acting at a
point ‘i’

» effect of this charge is propagated from ‘i’ to infinity
V' +8(i,j)=0 8(i, j ) =Dirac Delta function

Multiplying with ¢ and integrating we get,

[ 8(V?¢)dQ = [ (-5, j)dQ = -¢'

*]dr - L(Z—i’)w“ .. G)

Therefore,

'+ f o 2
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Boundary Integral Formulation

Fundamental Solutions : One Dimensional Equations

Vo +A%0"+6,=0

Equation Fundamental
Solution

bapiace V' 45, =0 0" = Zr = |x
Helmbholtz 1

¢ = s sin(kr)

Wave Equation

0’9"

Rty
¢ =2—cH(ct—r)

VA ——-+5,5(¢)=0
o’ H=Heaviside function
Diffusion Equation TR o 2
q v ¢ 8(6)=0 o = -H() R
kor 4kt 4kt
Convection/decay o0 —0b* .. pr
Equation =il oY +8,8(r)=0 ¢ =—e ¢5[t—$j
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Boundary Integral Formulation

Fundamental Solutions : Two Dimensional Equations

Equation Fundamental
Solution
Laplace 2. IRy T
Ve +5,=10 ¢'=2—ln(—j,r:w/x1 + X,
T r
LTS
Helmbholtz V' + A% +5, =0 ¢ :ZH"( '(nr)
H,= Hankel function
D,Arcy kld ¢;+k2d ¢:+80=0 * 1 1 x12 xzz %
: dx | dx ) i e P W7 s
(orthotropic case) ol S T ST
Wave Equation ey gt 0 ¢;+808(t)=0 e H(ct —r)
t 2nc(c2t2 —rz)
Plate Equation 5l 7 A R c_,H(Q) ( r )
q (aﬁ — v J¢ +8,5(t)=0 e el
S; = Integral sine function
Navier’s Equation oG ;" : 1
5xj. +8,=0 ¢, =Uy, e,
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Boundary Integral Formulation

Fundamental Solutions : Three Dimensional Equations

Equation Fundamental
Solution
Laplace
P Vo +68,=0 ¢*=L,r=\/x12+x22+x32
4nr
Helmbholtz V' +A +8,=0 REN e
4nr
9 2 ) * 2 1% 2 1% -1
D’Arcy A BB LG S e L
dxl dxz dx3 ey kl kz k3 4 kl k2 k3
Wave Equation 2, _rj
c2V2¢*—a $iEds 5(¢)=0 Y
atZ 0 (I) =
4mr
Navier’s Equation 2
: 60 jk :: 8 e (I) * =U *e
(Isotropic AEIT 33 s TBv IR
J
homogenous)
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Boundary Integral Formulation

What happens when point ‘’ ison I" ?

Boundary
curve I'g
// / Boundary
curve I’
Boundary Z
Boundary point ‘7’

surface I”

3D case - Hemisphere around point ‘i’ case - Semicircle around point ‘7’

Augment the boundary with

» Hemisphere of radius & in 3D
» Semicircle of radius € in 2D
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Boundary Integral Formulation

Consider equation (3) before any boundary conditions have been applied,

¢i+J‘F¢(@a

i = (S

- RHS integral easy to deal (lower order singularity),

12
lim 3 | O A1 i i f SRS S S LT
e>0 | IT, On e>0 | IT. Op 4 e e>0 | On 4 Te

- LHS integral behaves as,

lj*m”{jfed’aat* }_ISIT"{ I¢4n8 }:18,-2,0{—¢j“82}=—§¢f
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Boundary Integral Formulation

Therefore,

ch! + jr¢(aa";* jdl“ : M*(g—i’jdl“ -+ (4)

Gie— for smooth boundaries

e [
¢ = —— for corner points

Boundary with corner point
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Boundary Integral Formulation (contd.)

Exterior Problem - Electrostatics,

A system of ‘/NV_’, ideal
Vid=0 outside conductors

Potential¢ known on the surface of each conductor

For 3D Electrostatic problem the boundary integral equation is,

er and)dl“

1=
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Boundary Element Method

Equation (4) is discretized to find system of equations

Boundary is divided into /V elements

ISIOC{;S Ae@

Constant elements Linear elements Quadratic elements

Discretized form of equation (3) at point ¢/’ is given as,

Lo s 2

—, *T; On
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Boundary Element Method

In matrix form,
0D
[H [o }= [c ]{a—}
n
where /17 and G are the influence coefficients given as,

‘7’ is the source point (where fundamental solution is acting)

‘/> is the field point (any other nodes on the boundary)
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Boundary Element Method

Constant Elements;

> ¢ and ¢ “are assumed to be constant over each element
» The value of ¢ and ) " is assumed equal to that at mid-element node

The influence coefficients, /77 and G” are given as,

HY =—95(i, + ——dTI'
. (4,7) Lj on

GV = J‘F'd)*dl“ \

(\y\/ Node ‘7’

Element 7’

‘7’ is the source point (where fundamental solution is acting)

‘/> is the ficld point (any other nodes on the boundary)
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Boundary Element Method

Evaluation of integrals:

» H' and G" can be calculated numerically, for the case j # j
> For the casei = j, /I’ and G" are evaluated analytically

Node 7’ Element ‘i
< [ >
0
H”—l+ %dl":l_kj‘ 09 0 szl
2 T, On 74 r\ or On 2
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Boundary Element Method

Linear Elements:
> ¢ and (|) "are assumed to vary linearly over each element

A

Nodal value of

Nodal value of [ (I) % (I) z

N

d »
<« »

b= [N NZ]{iz} o it Nz]{a(b]/an}

Therefore,
X 1
y = it 7 [ [
H ‘25(”1)+L,

Gi=[ [N, N,Jprar / il

J Node 7’
Element ‘7’

IV, Nz]%dl“
on
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Boundary Element Method

Putting all the unknowns on LHS we get,

[4 Jxj={F}

Note: 4 is a dense matrix

G D W i |
Dense Matrix = ~ ! . -
. | s
(Nx N) = o
- . 4 g : - /
DIRECT J b ITERATIVE
O(N?) O(N?)
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Fast Integral Equation Solver

Results : 2-Conductor Problem

- -
. - .
L umt . L umt
L umt
B 2 CONDUCTOR PROBLEM [Storage plot)
1DC 10 T T T
== N (dense form)
= fast BCM (compresse d form)
10
5

Rl
@ LI
S £, 10
o s3]

107

10°F
w— Matiix-vector product with compressed form
= M{logh)” plot
10::__ " A ......|:3 . . —_— ] 103. -
10° 10 10 10 10" 0"
Mumber of nodes Mumber of nodes

Matrix-Vector multiplication: O(N(logN)?)
Storage: O(N(logN)?)
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Fast Integral Equation Solver

Results : Mirror Problem

%

MIRRCOR PROBLEM (FLOFS plot)
T

L50 units

m— Matrix-vector product with compressed form
wim N[logN)* plot

FLOPS

10
MNumber of nodes

10’

10°;

10+

Bytes

10

10l
10

IE units

t 3.2 umits
I 2 units

rmrsrsurs FROBLER (Storage plot)
— T .

== N (dense form)
= fast BCM (compressed form)

- i i
10° 10
MNumber of nodes

Matrix-Vector multiplication: O(N(logN)?)

Storage: O(N(logN)?)
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Fast Integral Equation Solver

Results : Comb-Drive Problem

COMB-DRIVE PROBLEM (FLOPS plot) L& units COMB-DRIVE PROBLEM (Storage plot)

= hAntrix-vector product with compressed form | LA Y (dense form)
== MNilogM) | m— fast BCM (compressed form)

FLOPS
3

.
-

10 1wt .
10° 10° 10 10°
Mumber of nades MNumber of nodes

Matrix-Vector multiplication: O(NlogN)
Storage: O(NlogN)
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Outline

v Some MEMS Examples

» Mixed-Domain Simulation of electrostatic MEMS and
microfluidics

¢ Techniques for interior problems (e.g. FEM)
¢/ Techniques for exterior problems (e.g. BEM)
1= Algorithms
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Coupled Electromechanical Analysis

=  We need to self-consistently solve the coupled electrical and
mechanical equations to compute the equilibrium
displacements and forces. Three approaches —

=  Relaxation technique

=  Full-Newton method

=  Multi-level Newton method

= Solution of elastostatic equations is represented by

u=R, (P(q))

=  Solution of electrostatic equations is represented by

q = RE(u9 V)
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Relaxation Technique

Simplest black-box approach

Data is passed back and forth between black-box electrostatic
and elastostatic analysis programs until a converged solution

is obtained

k=1;u"*=0

Repeat
Compute q“ =R, (u")
Compute #**" =R, (P(q"))
k=k+1

k+1 k+1

¢ lo*-q

Until Hu —u
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Relaxation Technique

= Advantages
=  Very quick implementation based on black-boxes
=  Existing mechanical and electrical solvers can be used

= Disadvantages

=  Fails to converge for strong coupling between electrical and
mechanical domains
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Multi-Level Newton Algorithm

= Matrix-free approaches: Matrix-vector product involving a
Jacobian and a vector can be computed as

a_RAu i R(u+ eAu) — R(u)
ou £

®» Define a new residual

q— R, (”)}
R(u,q) =
) {u - R, (q)
= The Jacobian of the residual is given by

OR, OR | [ OR,

0q Ou ;  Ou
‘I(qu)= aRZ aRZ b7 _akl I
' O0q ou| | Oq J
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Multi-Level Newton Algorithm

k=Lu" =0;9" =0 use an iterative solver

Repeat /

solve J(uk,qk){gZ} =—R(u",q")

set u*!' = u* + Su

et qk+1 :qk _|_5q
k=k+1

k+1 k+1

<é&

until Huk —u | <¢ qu —q
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Iterative Solution of Linear Systems

= Lets say we need to solve Pg=p
= Key steps in GMRES algorithm

make an 1nitial guess to the solution, ¢,

set k=0

do . : .
compute the residual, r* = p— Pq
if HrkH <tol, return q* as the solution

else {
choose a's and f 1n

k
k+1 j k
¢ =) a4’ + pr
j=0
to minimize Hrk“
set k=k+1

j
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Multi-Level Newton Algorithm

OR R(u+60*r)— R(u)

—Xp =
ou 0
¢9=sign(u*r)*au
r
a € (0.01,0.5)
OR oo \
B I 2
o o lisy |9 R (ut 650)~ R, ()]
J(u,q) oul —| OR ou i 1 |
A Gu— R, (q+059)~ R, (q)]
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Multi-Level Newton Algorithm

= Advantages
=  Black box based approach
=  Superior global convergence

= Disadvantages
=  Can be sensitive to the choice of the matrix-free parameter

Computational MEMS/NEMS Beckman Institute University of lllinois at Urbana-Champaign




Full-Newton Technique

= Represent the mechanical and electrical equations as
R, (u,q)= f™ ()~ f*"(q)=0
R, (u,q)=P(u)q—-V =0
» Jet uw and g be self-consistent solutions
R, (u,q)=0
R (u,q)=0

=» Let u, and g, be some initial guess

R, (u,q)= RM(uO,qO)+aRJAu+aRJAq+h.o.t =0
ou oq

R, (u,q)= RE(uO,q0)+a£Au+ oR; Aq+h.o.t=0
ou oq
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Full-Newton Technique

= Neglecting h.o.t

—aRM Au+—aRM Aq=—-R, (u,,q,)
ou oq
8§E Au + ORy Aq=—-R,(u,,q,)
u oq

= |n matrix form

OR,, OR,,

Ou oq %H}: _{RM(uoaqo)}
OR, OR. |'Aq R, (u,.q,)
 Ou  0q
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Full Newton Algorithm

i=0;u =0;4” =0

Repeat
OR,, OR,, |
ou aq Au(i) “ M(u(l 1) (i—l))
solve OR, OR, {Aq(ﬂ}_ {RE(u" . (i—l))}
| Ou oq |
set u® =u""" + Au"

et q“’ A q(i—l) R Aq(i)
i=1+1

until ‘Au(i)

<e¢ |Aq? <
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Full Newton Algorithm

int
OR,, pire of " (u) — entirely elastostatic part

Ou Ou
OR, =iy o(Pq-V) = P — entirely electrostatic part
Oq oq

ext
agJ B of 5 (9) — electrical to mechanical coupling term
q q

OR, 5 o(Pq—V) _0P(u) g — mechanical to electrical coupling
ou ou Ou term
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Microfluidics: Gas Flows
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Introduction to Microfilters

Microfilter properties:

T Openings of various shapes . *
=
7 Thickness between 1 and Sum = -

) Opening size as small as 2nm

) High burst pressure achieved

000000000

Desion i , 0090000000

€sign Issues: “‘..““
) Flow profiles Y )

7J Estimation of flow rate “‘U"““

) Dependence of flow rate on:

7 geometry
Rarefaction effects observed due to small

dimensions

7 surface properties

7 pressure difference

Computational MEMS/NEMS Beckman Institute 1’[ University of lllinois at Urbana-Champaign




Characteristics of Flows in Micro-Channels

Typical Characteristics:  Effects of high Knudsen Number:

* Compressible * Slip velocity

* High Kn # * Thermal jump

* Small Re # * Strong interaction with walls
 Small Ma #

* Wide range of Kn #

* Reacting

Computational MEMS/NEMS Beckman Institute 1’[ University of lllinois at Urbana-Champaign




DSMC Flow Chart

F . o . . ‘s ey =y
initialize particle positions & velocities move particles.
initial domain decomposition ~| Implement surface interaction .
set initial estimate for self-consistent implement particle injection )
boundary-conditions {

.
implement collisions:
sort particles to cells

choose collision pairs and test A
determine new velocities

i Periodically:
» Update averaging variables

+ update self-consistent boundary
condlitions

| - perform load balancing

A
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Micro-Filter Elements

Ix1 | 1x5 | 0.2x1 | 1419 |0.05x1| 0.2x2
h, (pm) 1 1 0.2 1 0.05 | 0.2
I (um) 1 5 1 10 1 2
hp (um) 5 5 1 5 1 1
|m (um) 4 6 4
Iout (Mm) 7 7 4
Kn 0.054 | 0.054 | 0.27 | 0.054 | 1.1 | 0.27
........ BN R i R e

hp
hc

e i e e
= 4 ]
|« Gl
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lumX1um Filter Element

Pressure

2 4 6 8 10 12

I130

1120

1110

100

90

X Velocity

10

12

120

180

100

160

40

20

0

Temperature

6 8

10

12

302

300

1298

1296

294

292

290

Y Velocity

i
»

-

6 8 10

12

110

10

30

20
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Knudsen Number and Length Effects

- 1‘x1 gm fillter 140 : : :
— 0.2x1 pm filter : = 1x1 pm filter
— 0.05x1 pm filter — x5 um filter
ey — 120+ ' | ixt0umfilter |
3 Al 100+
% _ 80
§ T 80F
= o8}
3 40"
20
%55 04 w03 -02_ 01 0 0l 02 03 04 05 91 15
Normalized position (y/hc) .
x10
Effect of Kn: Effect of Length:
[ Slip velocity increases [ As l¢/he increases, 2D
with Kn channel approximation

holds good for smaller Kn
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Effect of Surface Accommodation

1x1 um filter

1 60 T | T T T T T 304 .

140 s0e

: § .|_.M1: i

{m/s)
(<)

288

20 1 i | 1 | 1 | 1 286 1 | Il 1 1 1 |
0 1 2 K] 4 5 -2 -15 -1 -0.5 0 0.5 1 15 2
(m) x10~’ (m) -6

Smaller accomodation coefficients:

[ Strong increase in slip velocity
[ Temperature drop increases
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Flow Rate vs. Pressure Difference

O 1x1 pm (DSMC)
— 1x1 um (2D channel approx)

3

----- 1x1 um (2D channel approx) Leff=1.98 um
O 0.2x1 um (DSMC)

-9
T

Lo
T

av}
T

Flow rate {It/{s cm3

0.0& 0.1 0.15 0.2 0.2b 0.3

0.4

Flow rate (It/(s cm?

O I | | |
0.05 01 0.15 0.2 0.25 0.2 D
Pressure difference (Atm)

Dependence of flow rate on
pressure is linear
Qualitative behavior is
captured by 2D channel
formula + 15t order slip BC
(Arkilic & Breuer, 1997)

Good agreement for large
Ic/he

Effective length can be used
for smaller Ic/hce
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Conclusions

MEMS design is still an art

Critical issues
=  Mixed-domain simulation tools
=  Multiscale approaches
=  System level modeling tools

Need fast and radically simpler techniques for MEMS
modeling
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