Boltzmann equation and MC simulation:

1. Boltzmann transport equation
- derivation
- collision integral
- scattering theory
2. Description of various scattering mechanisms
- elastic scattering mechanisms
- inelastic scattering mechanisms
3. Monte Carlo method for the solution of the BTE
- Monte Carlo integration
- Generation of random flight times
- Choice of scattering event
- Choice of final state
- Ensemble Monte Carlo simulation
- Monte Carlo flow-chart
- Inclusion of Pauli exclusion principle
- Carrier-carrier scattering
4. Monte Carlo device simulation
- Charge assignment and force interpolation
- Motion in real space
- Monte Carlo device simulation results

- Short-range Coulomb force treatment in PB-simulations

1. Boltzmann Transport Equation

1.1 Derivation of the Boltzmann Transport Equation

Kinetic theory: We need to derive an equation for the single
particle distribution function f{v,r,f) (classical) which gives the
probability of finding a particle with velocity between v and
v+dv and in the region r to r+dr

* We assume that v and r are given simultaneously which neglects
guantum mechanical nature of particles.

* f(v,r,t) allows us to calculate ensemble averages over velocity and
space (particle density, current density, energy density, etc.):

(A(t)) = pdrpavA(v,r,t)f(v,r.t)
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« For this to give the proper average, fis normalized as follows:
[arfavf(v,r,t)=1

* To derive an equation of motion for f(v,r,?), it is somewhat
easier to consider the particle density

n(v,r,t) = Nf(v,r,t)
where
N = [dr{avn(v,r,t) = Total # of particles

» The density n(v,r,f) should satisfy a continuity equation in the
6D phase space defined by

X Y,2,V,,v,,V, - Independent variables

m Computational Electronics

« Consider a hypervolume in phase space .
yP PHAse sp j(v.r,1)

j(r,v,1) is the flux density /v

j(r,v,t)eds is flux through

hypersurface ds

» Consider the particle balance through the hyper-volume V

:tjdrdvn(v, r,t)=—[i(v.r,t) s+ Idrdva—'7 +
4 S 4

tColl
Time rate of change Leakage Time rate of change
of # particles in V through S due to collisions

+ Jdrdv{G(r,VJ) - R(rv,t)}

Time rate of change due to G-R mechanisms
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» The flux density is written in terms of the time derivatives of
the ‘position’ variables in 6D:

jxy.zv.v,.v,)=vnlvrt)a, +v,na, +v,na, +

W Vys Vz
F, ~ F ~ F ~ F
~Xnb, +-Ynb, +-2nb, withv=—
m > m " m " m

* Applying the divergence theorem in 6D
[i(v,r,t) s = paravO G(v,r,t)
S v

where the divergence of j is

on on, on _F,on F,0n F, on
R + Y +-Z

Og=v,—+v,—+v,
ox Yoy ‘0z mdv, mav, mav,
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which is written more compactly as:
F

Og=vl,n+—0,n
m

 Particle balance is therefore:
IdrdvE@ +v,n i M, n _on
v Lot m ot

_on

Coll ot

Normalizing, we get the classical form of the Boltzmann
transport equation:

af(r,v,t):_vmjrf P Lof
ot m ot

=0

G-rL

of
+

Coll at

G-R

First two terms on the rhs
are the streaming terms
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* For Bloch electrons in a semiconductor, we could have
considered a 6D space x,y,Zz,k,,k,,k, where k is the
wavevector and

1
v==0.E(k
L0.E()
* The semi-classical BTE for transport of Bloch electrons is
therefore
ofnkt) . 10 g)m,i-Fm,r+ 9 49
ot h h Otlcoy Otlor
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1.2 Collisional Integral

Assume instantaneous, single collisions which are
independent of the driving force and take particles from k to k'
(out scattering) or from k' to k (in scattering).

kz
Out scattering
Kk
5 ‘
I
k In scattering

m Computational Electronics




(A) Out Scattering

An(r k,t) =—n(r, Kk, O At

where I, is the transition rate per particle from k to k'
n(r,k,t)
N

Distribution function is: f(r,K,t) =
Take limit as At-0

ofnke) —f(r,k, ) e [1- F(r, K, 1)]

ot ouTt

where the last term in brackets accounts for the Pauli
exclusions principle (degeneracy of the final state after
scattering).
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(B) In Scattering

By an analogous argument, the rate of change of the
distribution function due to in scattering is:
of(r,k,t)

ot = £(r,K', ) [1= £(r Kk, 1)]

IN

Total rate of change of f(r,k,f) around k is a sum over all
possible initial and final states k':

In scattering

or(rke) S {F(rn K L= F(rk, )] -

ot ey ¥

f(r,k, t)[2-F(r,K, D)Mo}

Out scattering
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(C) Boltzmann Equation with Collision Integral

The sum over final states k' may be converted to an integral
due to the small volume of k-space associated with each state:

Vv
LYk
2 8113I

"

The BTE becomes:

of, 1 F
a—§+£DkEDD,fk +£Dkfk =

8\T/l31 ak{f, [1 - fk]rk’k _fk[l_ fk’]rkk'}
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1.3 Scattering Theory

What contributes to I ?

Scattering Mechanisms

| | |

| Defect Scattering | | Carrier-Carrier Scattering | | Lattice Scattering |

A\ 4 v l
Crystal .
Impurity Alloy Intravalley Intervalley
m | Optical | I Acoustic I I Optical I

Deformation Piezo- Nonpolar Polar
potential electric ;] LI
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Time dependent perturbation theory

* Assume the Hamiltonian may be decomposed as H=H,+V/,
where H, is the Hamiltonian of the perfect crystal (described by
Bloch states), V((r,t) is a small random potential. If V <<H,,
then it is a good approximation to expand the solution (with
random part) in terms of unperturbed eigenstates:

HW, =E\,; wz(r’t) - wk(r)e—iEktlh

» Expand actual solution in terms of these orthonormal functions:

W(r.t)= ) ()W (r)e ="
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* If the initial wave packet is centered around k, so that
C, (t)=1 Chzk, (t)=0

* In the limit at ¢ o, the probability of finding the particle in
another state k' is

. 2 K Ko
P =m0 1) —@
» Define the transition rate
= tim ) ey
Kok t00 - o t

* Solve for G, using the S.E. and the previous expansion

—iEt . 0 —iE,t
{Ho + Vs}% c ()W, (r)e BlR = ’ha% c(t)w,(r)e Bl
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H, part cancels with phase factor on RHS

VS%Ck(t)LIJk(r)e—iEkt/h = I'hgacakt(t)tpk(r)e—iﬁt/h

—iE, tIn _
« Multiply both sides by LIJk(;(f)e Fol' and integrate

9c, (1)

K. ~i(E, ~E,)tI%
: V ke %
at S‘ >

= % ¢ (t) ko
where the matrix element, using Dirac notation, is defined as

(ko Ve k) = g e Ve (ra)w
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» Assume sufficiently weak scattering that c,,=1, and c,,~0 for
all time. The dominant term in the sum is:

’hai}(t) = ¢ (t) ky

Y \/s‘ko>e_i(Ekb_Eko)t/h

which integrates to

v, k0>e—i(Ekb—Ek0 )t 11 .y (0)

1 t ! I
Ck, (t)= %Idt (ko
0
» Suppose V(r,t) may be Fourier decomposed, so that
Ve(r,£) = Ve (r)e™

Note that this form of V(r,t) may correspond to interaction with
lattice vibrations or with optical excitation.
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» Then substituting
1

%(t):- (ko

\k>;dt' e™; N=(E, -E, Fhu)in

and integrating this last expression leads to

1 e
Ck(’) (t) = %Vk"kosT

1 o in(A
C (t) = %Vsk()k"e 'M/ZEJLr;Et t) [Ht

* Since the probability of being in k' is given by

—iNt _ 1

. 2
Pe = Jim Je (1)
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* Substituting for c and taking the magnitude squared gives
|n
L /\t

kk’

P, = lim
Koks t[l[laoohz

where asymptotically

lim Mﬁ 2r(\)/ t = 23(E,, - E,, F hw)/ t

00 - oo

This gives the famous Fermi's Golden Rule (droping Os index)

M % *S(E,, - E, T ho) |

» Assumptions made:

(1) Long time between scattering (no multiple scattering events)
(2) Neglect contribution of other ¢'s (Collision broadening ignored)
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2. Description of various scattering mechanisms

2.1 Elastic Scattering Mechanisms

(A) lonized Impurities scattering

(lonized donors/acceptors, substitutional impurities, charged
surface states, etc.)

* The potential due to a single ionized impurity with net charge
Zeis:

]

- ——  mks units
4ATEYr

* In the one electron picture, the actual potential seen by
electrons is screened by the other electrons in the system.

0=-22
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What is Screening?

Ap - Debye screening length

o>
@/'<_@ > Example:
screening 00
.1 _ cloud 1 T
@\ Oo—p 3D: S rEXpB_)\DE
o— o

Ways of treating screening:

* Thomas-Fermi Method
static potentials + slowly varying in space

* Mean-Field Approximation (Random Phase Approximation)
time-dependent and not slowly varying in space
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» Considering the induced charge caused by the change in the
electron gas by the impurity, the net potential seen is

_V%(a)
(a)= c(a0)

In the above expression, g is the wavevector associated with
Fourier transforming the potential (and Poisson’s equation),
V{q) is the total potential seen by an electron due to an
impurity, and &(q,w) is the dielectric function characterizing the
polarization of the electron gas to the impurity potential.

V2

1

« In linear response theory, this may be calculated in the
random phase approximation (RPA) to give the Lindhard

dielectric function
e’ fo(Ek+q)_ fO(Ek)

,)=1-Iim
e(0, w) g
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» Assuming low frequencies, and assuming long wavelengths,

the Thomas-Fermi function is obtained to be of the form:
2

: A
lim &(q,00) =1+,
wg-0 q
where the inverse screening length A? is given as (3D):

2

2
=" phightemperature; N2 = 3e'n
SsckBT ZSSCEF

; T =0K

In here, nis the carrier density and E is the Fermi energy.

* Assuming the Fermi Thomas form, inverse Fourier
transforming gives the form of the screened potential in real
space as:

Zq° _
v()=-,7 e
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* For the scattering rate due to impurities, we need for Fermi’s
rule the matrix element between initial and final Bloch states

(n KVi(r)nk) =V adru, e ™V (r)u, e

Since the u's have periodicity of lattice, expand in reciprical
space

=3 V7 are™"V(r)e""e ™ U, (G)
G ) P
— g V—lj- dre—lk'm\/i (r)elkme—le J. drru:ﬂk’ (rr)unik (rr)ele
Q

» For impurity scattering, the matrix element has a 1/q type
dependence which usually means G£0 terms are small

=V ke M {0)er 't () = Vi g
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» The usual argument is that since the u's are normalized within
a unit cell (i.e. equal to 1), the Bloch overlap integral /, is
approximately 1 for n’=n [interband(valley)]. Therefore, for
impurity scattering, the matrix element for scattering is
approximately
2 4

2 2 Ze
K'VAr)k)" =\Vi(qg) O \

‘< l( )‘ >‘ ‘ l( )‘ Vz(qz +)\2)8§c

where the scattered wavevector is: q =k — k'

* This is the scattering rate for a single impurity. If we assume
that there are N, impurities in the whole crystal, and that
scattering is completely uncorrelated between impurities:

e NZ%e'  _  nZ%"
i Vz(qz +)\2)8§c V(q2 +)\2)€§c
where n; is the impurity density (per unit volume).
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. 'V =volume
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* The total scattering rate from k to k'’ is given from Fermi’s
golden rule as:
: 2mn.z%e*
= oo\ s OB —E)
Kk k k
Valg® + 2"k,
If 6 is the angle between k and k', then:
q =k —K|=k*+k'> - 2kk' cos 8 = 2k*(1- cos )

» Comments on the behavior of this scattering mechanism:
- Increases linearly with impurity concentration
- Decreases with increasing energy (k?), favors lower T
- Favors small angle scattering
- lonized Impurity-Dominates at low temperature, or room
temperature in impure samples (highly doped regions)

* Integration over all k' gives the total scattering rate ' :
. nZ%*'m*0  4k* O
re=-" ' \o Ao =1/

< erel etk i ak + 8 P
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(A1) Neutral Impurities scattering

* This scattering mechanism is due to unionized donors, neutral
defects; short range, point-like potential.

* May be modeled as bound hydrogenic potential.

» Usually not strong unless very high concentrations
(>1x10%%/cm3).

(B) Alloy Disorder Scattering

* This is short-range type of interaction as well.

« It is calculated in the virtual crystal approximation or coherent
potential approximation.

« Limits mobility of ternary and quaternay compounds,
particularly at low temperature.

» The total scattering rate out of state k for this scattering

mechanism is of the form: ( )2 I
OE gm*
ral/oy: g E1/2
k 2mh T h? [
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(C) Surface Roughness Scattering

* This is a short range interaction due to fluctuations of
heterojunction or oxide-semiconductor interface.
* Limits mobility in MOS devices at high effective surface fields.
High-resolution transmission electron micrograph of the

interface between Si and SiO,
(Goodnick et al., Phys. Rev. B 32, pp. 8171, 1985)

Modeling surface-roughness
scattering potential:

H' (r,2) = V,8[~z + A(r)] - V,6[-Z]
= Vd(2)A(r)

random function that describes the
deviation from an atomically flat interface
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» Extensive experimental studies have led to two commonly
used forms for the autocovariance function.

» The power spectrum of the autocovariance function is found to
be either Gaussian or exponentially correlated.

Comparison of the fourth-order AR spectrum with the
fits arising from the Exponential and Gaussian models
(Goodnick et al., Phys. Rev. B 32, pp. 8171, 1985)

0.8
SPECTRUM OF HRTEM ROUGHNESS Commonly assumed power spectrums
0-S1 A=0.24 nm AR modd for the autocovariance function :
0.4 Gaussian model
. \/ &€=0.74 nm 0 qZZZD
0. B . — 27,2
\ Exponential model * Gaussian: Sg(q) =M EXPE' 2 H
0.2 £=0.94 nm
2,2
. TA
0.1 _ =/ S * Exponential: SE(q)zizz',2
(L+a?2?/2)

-1.6-1.2-0.8-0.4 0 0.4 0.8 1.2 1.6

Wave vector (A1)

* Note that A is the r.m.s of the roughness and ( is the rough-
ness correlation length.
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» The total scattering rate out of state k for surface-roughness
scattering is of the form:

* N272 o8

rlfr = rn?# (Ndepl + O'SNS) L kz
hes, \/1+ k2C? F\/1+ k2C?

where E'is a complete elliptic integral, Ny, is the depletion
charge density and N, is the sheet electron density.

* It is interesting to note that this scattering mechanism leads to
what is known as the universal mobility behavior, used in
mobility models described earlier.

HA

Increasing substrate doping

> Eeff = ;(OSNS + Ndepl)

Sc
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The Role of Interface Roughness:

D. Vasileska and D. K. Ferry, "Scaled silicon MOSFET'’s: Part | - Universal
mobility behavior," IEEE Trans. Electron Devices 44, 577-83 (1997).

Phonon
Coulomb T
r T
—., 400 ~ . (aN * bNdepI) i
@) / ~
Z‘ 300 | %7 oS Tl \ N Y8 |
NE %%Q\ /
S, ’S\:
é‘ 200 | a experlmental data
= —e— uniform N w}/'
o
= - =— retrograde (Gaussian)
100 1 rooa ol 1 1 1 PR |

1012 1013
Inversion charge density NS [cm'z]

|4
Interface-roughness
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2.2 Inelastic Scattering Mechanisms

2.2.1 Some general considerations

» The Electron Lattice Hamiltonian is of the following form:
H=H,+H, + Hep

H, = Electron Hamiltonian; H, = lattice Hamiltonian
H,, = Electron — Phonon coupling
where H W, = E, Wo Wy = e’kmun,k Bloch states

 For the lattice Hamiltonian we have:
Heo =E@ ¢U ‘nqlannqS"'>

Second quantized representation, where n, is the
number of phonons with wave-vector g, mode &.
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E, = 3 e +3)

* Phonons:

The Fourier expansion in reciprocal space of the coupled
vibrational motion of the lattice decouples into normal modes
which look like an independent set of Harmonic oscillators with
frequency o,

¢ labels the mode index, acoustic (longitudinal, 2 transverse modes) or
optical (1 longitudinal, 2 transverse)

g labels the wavevector corresponding to traveling wave solutions for
individual components,

» The velocity and the occupancy of a given mode are given by:

£
VE = 0w,
q aq
£ 1 _ . e
ng=— .- Bose-Einstein distribution
ehu)q/ kT, -1
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3
(1) For acoustic modes, limvé = 000/ = u*, acoustic velocit
’ q aq ] y

qg-0

(2) For optical modes, velocity approaches zero as g goes to zero.

r A X R X z T A L
oL T 17 i - . —
o= e -
8“’" 5 N , A
| Lt

- | .
8T o
T / L oa
L‘O [ /’ ol -“\ - - T - La
= 5_1. - // N \ \ T s T yya
- T / | Iv\ \ Il
- Y/ 1 Py /s
> af 7, | NS L
= ,/ AN\ 7
w 3k 1 NN .
2 s 1 NN
[= // ansey \\\\
23 L o SN e
[T - Z,

i L : 4 4

1

0 0F 04 0§ 08 W0 QB G8 G4 02 006 oI 0z a3 04 a5
[q00] [0qq] faqq}
REDUCED (DIMENSIONLESS) WAVE-VECTOR, g

Room temperature dispersion curves for the acoustic and the optical
branches. Note that phonon energies range between 0 and 60-70 meV.
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» The Electron-Phonon Interaction is categorized as to mode
(acoustic or optical), polarization (transverse or longitudinal),
and mechanism (deformation potential, polar, piezoelectric).

During scattering processes between electrons and phonon,
both wavevector and energy are conserved to lowest order in
the perturbation theory. This is shown diagramatically in the
figures below.

Absorption: k'=k +q Emission: k'=k -q
Ek’ = Ek +hwq Ek' = Ek —hwq
K,
0”’ “““
©q,hw, 0 haw,
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17



* For emission, E,. 2w, must hold, otherwise it is prohibited
by conservation of energy. Therefore, there is an emission
threshold in energy

* Emission: 1, =n, +1 Absorption: 1, =n, =1

2.2.2 Deformation Potential Scattering

a homogeneous strain equal to the local strain at position r
resulting from a lattice mode of wavevector g

(A) Acoustic deformation potential scattering
» Expand E(k) in terms of the strain. For spherical constant
energy surface

E(k)= E°(K) + E,A + 9(e?)
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Replace H,, with the shift of the band edge energy produced by

where:
A =0 1w(r) = dilatior: of volume of unit cell

E, = Deformation potential const.
E,A = Deformation potential

and u is the displacement operator of the lattice
/2

h i * — I
0= B % oy + ajee )
q

€, = polarization vector

» Taking the divergence gives factor of e-q of the form:
€,: [l = g for longitudir.al modes
€,: [ =0 for transverse modes

Therefore, only longitudinal modes contribute.

m Computational Electronics
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* For ellipsoidal valleys (i.e. Si, Ge), shear strains may contribute
to the scattering potential

E(k)DE°(K)+E,A+Ee,,

ou - _ ,
e,, Da—z , e, Is component of the strain tensor
Scattering Matrix Element:

Assuming W, = U,q, then:

‘2 _hElq, (I‘lq +1F 1) Eupper absorption H

V. [° =
| 2Vpu, Clower emission [

ac

* At sufficient high temperature, (equipartition approximation):
kgT,
ng=n,+1=

o,
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 Substituting and assuming linear dispersion relation, Fermi’s
rule becomes
21, , 2 _ 2MEK,T, _
ra ="V, [ 3E -E Fhw,)=—""2"B1L3E -E Fh
kK A ‘ ac‘ ( K k (*)q) thU,Z ( K k wq)
» The total scattering rate due to acoustic modes is found by
integrating over all possible final states k’

Fac 2MEZk,T, V

(4n)°£ dk'k8(E,. - E, ¥ oo,

“ avwu? 8
where the integral over the polar and azimuthal angles just
gives 41t

 For acoustic modes, the phonon energies are relatively small
since
w, - 0asqg -0
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* Integrating gives (assuming a parabolic band model)

m'keZ (kT), 5
——=—, ¢ =pu
’c, ;=P

where ¢, is the longitudinal elastic constant. Replacing k, using
parabolic band approximation, finally leads to:

L2m B2 (kT
m'c,

ac _
P

/ El/2

ac —
e =

» Assumptions made in these derivations:

a) spherical parabolic bands

b) equipartition (not valid at low temperatires)
¢) quasi-elastic process (non-dissipative)

d) deformation potential Ansatz
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(B) Optical deformation potential scattering
(Due to symmetry of CB states, forbidden for I'-minimas)

» Assume no dispersion:
W, »wasq -0

Out of phase motion of basis atoms creates a strain called the
optical strain.

* This takes the form (D, is optical deformation potential field)
Voo =Dy [U(r); Dy=D,[®, zerothorder

(0]

The matrix element for spherical bands is given by

2
vl = @Z?To%gn%a(k ~k+0)+[n, +1b(k—k - q}

which is independent of q .
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» The total scattering rate is obtained by integrating over all k' for
both absorption and emission

*3/2 v2
Fd"— 1 m 2 %%(E-l-hwo) %
Jo==
Tao f2ﬂph3wo Hn +1|(E - ne, ) *O(E - hey )5
where the first term in brackets is the contribution due to
absorption and the second term is that due to emission

. 1/2
» For non-spherical valleys, replace m D mm

* The non-polar scattering rate is basically proportional to density
of states

r¢® O p(E £ huy)
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(C) Intervalley scattering
* May occur between equivalent or nonequivalent sets of valleys

D | V7

07 2PN

- Intervalley scattering is important in explaining room tempera-
ture mobility in multi-valley semiconductors, and the NDR ob-
served (Gunn effect) in IlI-V compounds

- Crystal momentum conservation requires that g=Ak where k is
the vector joining the two valley minima

m Computational Electronics

21



* Since Ak is large compared to k, assume W, — Wy, and treat
the scattering the same as non-polar optical scattering replacing
D, with D, the intervalley deformation potential field, and
the phonon coupling valleys i and j

» Conservation of energy also requires that the difference in initial
and final valley energy be accounted for, giving

ni?D? i, (E-AE; +hoy ' +
z@ﬂﬁu},@n +1(E-AE, -, ) *Q(E- AE, - )

where the sum is over all the final valleys, jand
AE,-j =E_ . —E

min j min

H
0
B
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2.2.3 Phonon Scattering in Polar Semiconductors

 Zinc-blend crystals: one atom has Z>4, other has Z<4.

» The small charge transfer leads to an effective dipole which, in
turn, leads to lattice contribution to the dielectric function.

» Deformation of the lattice by phonons perturbs the dipole
moment between the atoms, which results in electric field that
scatters carriers.

 Polar scattering may be due to:

optical phonons  => polar optical phonon scattering
§very strong scattering mechanism
or compound semiconductors such
as GaAs)

acoustic phonons => piezoelectric scattering _
(important at low temperatures in
very pure semiconductors)
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(A) Polar Optical Phonon Scattering (POP)

Scattering Potential:

Microscopic model is difficult. A simpler approach is to consider
the contribution of this dipole to the polarization of the crystal and
its effect on the high- and low-frequency dielectric constants.

» Consider a diatomic lattice in the long-wavelength limit (k=0),
for which identical atoms are displaced by a same amount.

« For optical modes, the oppositely charged ions in each _
primitive cell undergo oppositely directed displacements, which
gives rise to nonvanishing polarization density P.

. . .

k
Transverse mode: (B (B (B —
o ® > °o o
Longitudinal mode: <O <O <O —
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» Associated with this polarization are macroscopic electric field E
and electric displacement D, related by:

D=gE+P

f

Here, we have taken into account the contribution
to the dielectric function due to valence electrons

« Assume D, E, P O ek, Then, in the absence of free charge:
O0-D=ik-D=0 and [OxE=ikxE=0

k(OD or D=0 K||E or E=0
* Longitudinal modes: P||lk => D=0, &(w o)=0

» Transverse modes: PUk =>E=0, &(w;y)=
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» The equations of motion of the two modes (in the k-0 _Iimit?,
for the relative displacement of the two atoms in the unit cell

W:U1-U2 are
Transverse mode: Longitudinal mode:
u u u
ou,  eu,  eu ol  oi o>
CE CB — <O O O
U, U, U, u, u, u,
—+ w = o ==
dt? WroW =0 dt? M
1 1 2C E(t) = Ee™
W = ocHt + 1 H-2¢
My M, M * 2
_eEIM
w=-"5 — P
m Computational Electronics 007—0

* The longitudinal displacement of the two atoms in the unit cell
leads to a polarization dipole:

N . _Ne?/2vM
P=—ew=— "2

E
% W — 0

* The existence of a finite polarization dipole modifies the dielec-
tric function:

D=¢ E+P=¢ E+

2 2
gw) =g, H+——— S SHE €. +7°)L2O wrzo
Wro ~ W Wro ~ W

Polarization ———» S =

constant Ve M (€, €(0)
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» The electric field associated with the perturbed dipole moment is
obtained from the condition that, in the absence of macroscopic
free charge:

O =kD=0reE,,+P)=0=>D=0 and E, ; = -
» Consider only one Fourier component:

Eing = 00,4 =20V(q) = %Dl_\/qeiqmj =i1qV(q)

P

€

o)

. e . e
V(Q)=i——qlP =>V(q)=i —P
l €.0 €.4
e N . h 1 i
V(r)= e |-————— s —lae"+ae™"
)= Ism 2V 2M(N/2)(1)L0%q(aq % )

/2
he’ o) 1_ . O1
WwLog qq(a“e rae ) o~ e(O)E

m Computational Electronics

Scattering Rate Calculation:
» Matrix element squared for this interaction:

he?
2WuL0 g

. Transition rate per unit time from state k to state k’:

L (N + 17 )8k F )

Viw =

Cew = ‘ka‘ 3(g —& Fhw,,)
_ e 1
W, o q2

 Total scattering rate per unit time out of state k:

=3 Tk =2 Thg =
k’ q

2 )3 J’ d¢J’d(cose)J’q qudq
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absorption: Omin

emission:

* Final expression for '

m Computational Electronics

* Momentum and energy conservation delta-functions limit the
values of q in the range [4in:Amaxl-

= -k +k,/1+ 7w o /E(K)
Omax = K+ K1+ 7AW o/E(K)
Omin = k —ky1-7wy o /E(K)
Omax = K +Kky1-h0y o/E(K)

E(k) =2 7w o, emission threshold

M= snh‘lg E(k)% N, +1snh‘1E E(k) _ %
2T'h kV Lo [

Discussion:

I
-_——
Y
-
-

Momentum relaxation
rate

Teaareg raa Uil

I e
o
- i

smaller influence on the momentum

1 L-

iz emorpy. & icWi
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1. The 1/g? dependence of ', .. implies that polar optical phonon
scattering is anisotropic, i.€. favors small angle scattering

2. ltis inelastic scattering process
3. T, is nearly constant at high energies
4

. Important for GaAs at room-temperature and II-VI compounds
(dominates over non-polar)

Scattering rate

The larger momentum relaxation
time is a consequence of the fact
that POP scattering favors small

angle scattering events that have

relaxation.
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(B) Piezoelectric scattering

« Since the polarization is proportional to the acoustic strain, we
have
P=e,llu

» Following the same arguments as for the polar optical phonon
scattering, one finds that the matrix element squared for this
mechanism is:

2 _ h epz 171 L
Viee! _vaqu Eiw Q(Nq %4‘%)6(‘( k'+q)

» The scattering rate, in the elastic and the equipartition
approximation, is then of the form;

=T e i 0

ATk [€,V, [ q5

where g is the screening wavevector.
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Total Electron Scattering Rate Versus Energy:

Intrinsic Si . GaAs

il 0K ; sk N "

e wirmeg v 1

e
B [ id (L] [[E K]
Eltpan dmiry ¥

In both cases the electron scattering rates were calculated
by assuming non-parabolic energy bands.
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3. Monte Carlo method for the solution of the BTE

* The Monte Carlo method is a stochastic method for solving the
Boltzmann Transport equation.
» Semiclassical particle motion is assumed to be decomposed

into:
— free flights (subject to external forces)
k(t) =k(0)-e(vxB+E)t/n
— Instantaneous, memory-less, scattering events
(Elastic, inelastic, intercarrier, electron-photon, etc.)
References:

1) C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, no. 3, pp. 645-705, 1983
2) C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor
Device Simulation, 1990
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x
X
\“
v
<

Particle trajectories in k-space and real space
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3.1 Monte Carlo Integration

(M. H. Kalas and P. A. Whitlock, “Monte Carlo Methods,” John
Wiley, 1986) .
Suppose we want to integrate: g(x) = Ae"*'Y 0< x< B

Monte Carlo Algorithm:

A
* Define ceiling function

g(x)= A A

» Generate pairs of random Ar,
numbers: r, 1,

If Ar, >g(Br)) reject Ar,
If Ar,<g(Br}) accept

* Ratio of accepted to total ; —
times area AB is integral Br, Br, B

m Computational Electronics

v

Typical algorithm for accomplishing this goal is:

acceptnum=0
do 10 i=1,nsampltot
xval=rand( )*Bmax
yval=rand( )*Amax
gy=Amas*exp(-(xval/Lg)**2)
if (gy.gt.yval) acceptnum=acceptnum+1
10 continue
area=Amax*Bmax*acceptnum/nsampltot

Here rand( ) is a generic call to a random number generator
(either intrinsic or subroutine). Ideally it produces a uniformly
distributed random number between 0 and 1

m Computational Electronics
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3.2 Generation of Random Flight Times

» The probability of an electron scattering in a small time interval dtis I (k)dt,
where I'(K) is the total transition rate per unit time. Time dependence
originates from the change in k(f) during acceleration by external forces

k(t)=k(0)-e(E+vxB)t/n

where v is the velocity of the particle.

» The probability that an electron has not scattered after scattering at t= 0 is:

—jarr (k(t))
P()=e’

» The probability therefore that an electron will suffer its next collision during dt

around tis

—rder (k(¢
p(0)dt = r(k(D)e Vit
P(t) represents a non-uniform distribution of free flight times over a semi-
infinite interval 0 to . We want to sample random flight times from this non-
uniform distribution using uniformly distributed random numbers over the
interval O to 1, corresponding to typical numerical random number
generators.
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* To calculate the carrier free-flight time, it is necessary to
generate random numbers x with a given probability distributi-
on f{x) over an interval (a,b) from evenly distributed numbers r.

(A) Direct Technigue

* If P(r) is a uniform distribution between 0 and 1 then:
r = [drP(r') = F = [F(x)dx/ [ f(x)dx
0 a a
where x, is a random number sampled from f(x). x, is found by
inverting this integration.
» Example, for constant f(x) is given below:
r=(x,—a)l(b-a) or x,=a+r(b-a)

m Computational Electronics
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(B) Rejection Technigue

» For most cases of interest, the integral cannot be easily
inverted. As in the case of Monte Carlo integration, a rejection
technique may be employed.

* Choose a maximum value C, such that C > f(x) for all xin the
interval (a,b).

 As in the case of Monte Carlo integration, pairs of random
numbers are chosen, one between a and b

x,=a+n(b-a)

o] o]
and another between 0 and C: f %
];- = fi'c r,-C
° If rn-C
fi < f(x) =
the number x, is acceptedas
a suitable sample, otherwise it 0
is rejected. a5 *2 b
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(C) Combined Technique

* If the probability function is singular in nature, the simple
rejection technique with a constant ceiling function may be
inefficient. If a ceiling function may be defined such that

Kg(x) = f(x)

over the range of interest, and random numbers may be sample
from g using the direct technique, then a combined technique

may be used, where if: c
;)
nKg(x,) < f(x,)
r, Kg(xy)
the random number Xx; is Kg(x)
accepted. Kot
fix,) §
o]

a X, Xp b

m Computational Electronics
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(D) Self-Scattering

» The use of the full integral form of the free-flight probability
density function is tedious (unless k is invariant during the
free flight).

» The introduction of self-scattering (Rees, J. Phys. Chem.
Solids 30, 643, 1969) simplifies the procedure considerably.

» The properties of the self-scattering mechanism are that it
does not change either the energy or the momentum of the
particle.

» The self-scattering rate adjusts itself in time so that the total
scattering rate is constant. Under these circumstances, one
has that:

= (k(t)+ T, k() P(t)dt = re_gdfrdt =redt
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* Random flight times . may be generated from P(f) above using
the direct method to get:
- 1 1
r=e'" t = —Fln(l— r)= —Fln(r)

where ris a uniform random between 0 and 1 (and therefore r
and 1-r are the same).

* [ must be chosen (a priori) such that '> I'(k(?)) during the entire
flight.

» Choosing a new t, after every collision generates a random walk
in k-space over which statistics concerning the occupancy of the
various states k are collected.
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3.3 Choice of Scattering Event Terminating Free Flight

* At the end of the free flight ¢, the type of scattering which ends
the flight (either real or self-scattering) must be chosen
according to the relative probabilities for each mechanism.

» Assume that the total scattering rate for each scattering
mechanism is a function only of the energy, E, of the particle at
the end of the free flight

M= rseh‘(E) + ri(E) + rac(E) + rpop(E) t...
where the rates due to the real scattering mechanisms are
typically stored in a lookup table.

* A histogram is formed of the scattering rates, and a random
number " is used as a pointer to select the right mechanism.
This is schematically shown on the next slide.
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Choice of Scattering Event Terminating Free Flight:
_A_-

M+, ++0, +1
M+, +r+0,

< rr
IR IV o I

rl + r2 Selection process for scattering

r,(Et,))

N w [ o
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Look-up table of scattering rates:

Store the total
scattering rates
in a table for a
grid in energy

4AE
3AE
20AE
AE

0

nn+r, r+r+r;...
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3.4 Choice of Final State

* Final state energy E is determined through conservation of
energy

* Azimuthal angle of k relative to k ' selected randomly
between 0 and 21t

 Polar angle is selected
according to the angular
dependence of the
scattering cross-section

m Computational Electronics
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» Below is an example given for the choice of the polar angle
for POP scattering:

sin(B)ad
e (8)d0 - (E+E -2VEE cosb)
r(e)
rmax

Angular dependence for POP scattering
(A rejection technique may be used to choose final polar angle)
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3.5 Ensemble Monte Carlo Simulation

* For stationary problems, a single electron may be followed and
statistics collected from time averages of the particle motion.

» Estimators may be derived for the average drift velocity, energy,
and particle distribution function (e.g.):

_ 1N o
0~ t. = -
V2 N, %VZ( ) s N

where t;is the ith free flight and s is the standard error, with 62
the variance of v,estimated by:

51 N 2 =
o’ D/\/ 1N, 2’ Bi,zlv ')gé
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» For non-stationary (e.g. transient) problems, an ensemble
Monte Carlo approach is used by considering N particles
simultaneously, and introducing a time step, At, at which the
motion of all the particles is synchronized

il R

n l oo H il ;
e FL= L :
2 ! T : i :
: s : L : e :
gl goig g g b
: | = |y | —— |- : |-
4 P i : i P i :
i HEH (=Y of
i i 5 5 5 P 5 0 = collisions
: S L : : b [
6 i i e e T i
Fad : i L e
S S N O NS U S M
= | - : = L L] 1=
) ) ! 300 o - o 4 -3
O A 23N 4A... .. t
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» Estimates of the observable quantities are given by averages
over the ensemble of particles at each time step (or multiples

thereof)

zl°

v,(nAt) 0t gvé (nat);  s=
N =1

with the variance at each time step estimated as

N
N-1

2]

2 iV _ o
o" b &z() VZE

* In steady-state, both ensemble and time averaging may be
used to further reduce the error, and this is usually done in

practice.

m Computational Electronics
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3.6 Monte Carlo Flowchart and Simulation Results

» Constant ' method: Choose maximum I" at beginning of
simulation, check whether the actual scattering rate ever
exceeds this value.

* Input material parameters, maximum energy, tabulate
scattering rates, choose I',.,, choose maximum time for
simulation (T,,,,), time step (AT), number of particles, etc.

* After every time step (or multiples of time steps), calculate
averages of interest, distribution functions, etc.
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Time evolution of mean drift velocity.
Electric field is: (a) 1.0 kV/cm, (b) 5.0
kV/cm, (c) 10 kV/cm, and (d) 50 kV/cm,
respectively.
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Energy [eV]

0.25 e e e e e
02 [ . —— ]
[ ]
L7 —1kviem ]
015 T_-' -—5kviem ]
] ]
o1 H --——50kv/cm 3
i} i
o.os,i S ———————
0 Il Il Il Il Il Il Il

Transient simulation results for Si bulk:

Time evolution of the average
electron kinetic energy. The electric
field equals: (a) 1 kV/icm, (b) 5
kV/cm, (c) 10 kV/cm, and (d) 50
kV/cm, respectively.

0 05 1 15 2 25 3 35 4
time [ps]

(1971).

Steady-state simulation results for Si bulk:

) I |
~ . 4
5

O, 7L 20
: m
= L i ]
'S r Food ]
Js) I ]
g-’ L —e— Current simulations | 4
— L O Yamada simulations
RPN -
£ 10 ]
) | ]

1 10 100

Electric field [kV/cm]
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Mean drift velocity characteristics with respect to applied electric field. Also shown
in this figure are the simulation results by Yamada et al. [1] and Canali [2]
experimental data.

[1] T. Yamada, J.-R. Zhou, H. Miyata and D. K. Ferry, Phys. Rev. B, Vol. 49, 1875 (1994).
[2] C. Canali, G. Ottaviani, and A. Alberigi-Quaranta, J. Phys. Chem. Solids, Vol. 32, 1707
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3.7 Inclusion of the Pauli Exclusion Principle

» The influence of the final state on the scattering rate is
important at low temperatures and high carrier densities.

* This effect may be included via a self-scattering rejection
method (Bosi and Jacoboni, J. Phys. C9, 315 (1976); Lugli and
Ferry, IEEE Trans. Elec. Dev. 32, 2431 (1985)).

* The electron (hole) distribution function f(k,,k k) is updated in
k-space (on a 2D or a 3D grid).

* Once the final state has been selected, a new random number
is generated:

-If 0 <r < f(k) , then self-scattering is assumed to occur
with no change of momentum or energy
- If f(k) <r <1, then accept the scattering event
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N N .
Let = A= L2 Two-Dimensional System Example

Nyq

The area per state in k-
space is

Some important notes:

- The size of the grid in k-
space determines how many
electrons may occupy the
grid. T
- The accuracy improves as Aky
the number of particles s 2n/L
increases.
2n/L

|<———AkX —
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3.8 Carrier-Carrier Scattering

* For two-particle interactions, the electron-electron (hole-hole,
electron-hole) scattering rate may be treated as a screened
Coulomb interaction (impurity scattering in a relative coordinate
system). The total scattering rate depends on the instantane-
ous distribution function, and is of the form:

m e* k =Ko
r k = n f k ra 0 \
e T Wi )
B = Screening constant

There are three methods commonly used for the treatment of the
electron-electron interaction:

A. Method due to Lugli and Ferry
B. Rejection algorithm
C. Real-space molecular dynamics
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(A) Method due to Lugli and Ferry

e This method starts form the assumption that the sum over the
distribution function is simply an ensemble average of a given
guantity.

* In other words, the scattering rate is defined to be of the form:
(k,) = nme'ly v k=K
e Al Ak -k [ +1/ 1
* The advantages of this method are:

1. The scattering rate does not require any assumption on the form of the
distribution function

2. The method is not limited to steady-state situations, but it is also
applicable for transient phenomena, such as femtosecond laser excitations

e The main limitation of the method is the computational cost,
since it involves 3D sums over all carriers and the rate
depends on k rather on its magnitude.

m Computational Electronics
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(B) Rejection algorithm

* Within this algorithm, a self-scattering mechanism, internal to
the interparticle scattering is introduced by the following
substitution:

k=Ko 1
k—ko +1/12 2L,

* When carrier-carrier collision is selected, a counterpart
electron is chosen at random from the ensemble.

* Internal rejection is performed by comparing the random
number with:

‘k_ko‘
k—ko +1/12
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« If the collision is accepted, then the final state is calculated

using:
2r
cosf, =1- , where 0, =angle(g,g’
T 1+g%(-n 9e(0.9)
where:

g=k—kq g'=k'—k,

The azimuthal angle is then taken at random between 0 and
21

1.,
5(9 -9)

, 1, .
k =ko+§(g-g)

ko =Ko~
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» The final states of the two particles are then calculated using:
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(C)Real-space molecular dynamics

An alternative to the previously described methods is the real-
space treatment proposed by Jacoboni.

According to this method, at the observation time instant t=iAt,
the total force on the electron equals the sum of the
interparticle coulomb interaction between a particular electron
and the other (N-1) electrons in the ensemble.

When implementing this method, several things need to be
taken into account:

1. The fact that N electrons are used to represent a carrier density n =
N/'V means that a simulation volume equals V= N/n.

2. Periodic boundary conditions are imposed on this volume, and
because of that, care must be taken that the simulated volume and the
number of particles are sufficiently large that artificial application from
periodic replication of this volume do not appear in the calculation results.
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Using Newtonian kinematics, the real-space trajectories of
each particle are represented as:

r(t+At) =r(t) rvar+ tFD A
2m*

v(t+At)=v(t)+ i?At
m

and:

Here, F() is the force arising from the applied field as well as
that of the Coulomb interaction:

- _ [
F(t) = g - 3 000 (1))g

The contributions due to the periodic replication of the
particles inside Vin cells outside is represented with the
Ewald sum:

2

e” N1 21
F(t)=—-— a +-—r
0= e s 3V’E
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* The effect of the e-e scattering
allows equilibrium distribution
function to approach Fermi-Dirac
or Maxwell Boltzmann distribution.

* Without e-e, there is a phonon
‘kink’ due to the finite energy of the
phonon

arb. constant )

|

OCCUPATION NUMBER (
o

P
.01 .02 03 .04 .05 .06
ENERGY (eV)

o
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Simulation example of the role of the electron-electron interaction:

4. Monte Carlo Device Simulation

* The extension of the k-space Monte Carlo to simulate semicon-
ductor devices requires that the real space position of each
carrier be calculated, and the resulting charge used to solve
Poisson’s equation simultaneously with the particle dynamics.*

» The semiconductor is discretized
using either the finite difference
or the finite elements approach for
the solution of Poisson’s eq.

» The charge of the particles (super
particles) is then assigned to the
grid points.

*R.W. Hockney and J. W. Eastwood, Computer Simulation Using Particles,
McGraw-Hill, 1981
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* In the usual algorithm, the Monte Carlo particle dynamics are
de-coupled from Poisson’s equation over the interval of one
time step.

» The particles are accelerated by the interpolated forces
derived from the solution of Poisson’s equation from the
previous time-step.

» The particle-mesh coupling scheme consists of the following
steps:

- Assign charge to the Poisson solver mesh

- Solve Poisson’s equation for Vr)

- Calculate the force qE(r) =—-q V(r), and interpolate it
to the particle locations (g is the charge of the particle)

- Solve the equations of motion:

ar _ 1 dk _ gE(r)

E“%DkE(k(t)); di P
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Initial potential, fields positions and velocity of carriers

—ﬂ Free-flights acceleration displacement ‘

‘ Scattering events final states ‘

‘ Assign charge to mesh points ‘

‘ Calculate potentials and fields at each mesh point ‘

End of simulation
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4.1 Charge Assignment and force interpolation

» There are two methods most commonly used for the charge
assignment: Nearest Grid Point (NGP) and Cloud in Cell (CIC)
scheme (see figures below):

X ﬁ( X f ry X
[ ] [
x x x ><4—} (yx x
NGP CIC
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* In general, the charge on the p,, grid point is written as:
_q X
plry)= - s Wl -r,)
Vcel/ =1

where r;is the position of the ith particle, V,,, is the volume of
the p,, cell, g is the super-particle charge, and W is the weight
function.

* In the NGP scheme, the weighting function is of the following

form:
_ -H/2<r<H/2
w(r)= @ otherwise

where:
H = (H,,H,,H,) — Vector describing cell

dimensions
m Computational Electronics
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EH—M%—M%—BH -H<r<H

W(r):ED Hm H,m HsO

otherwise
Schematic description P
of the CIC scheme _ | -
><4J (VX x
cC
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* In the CIC scheme(3D), the weighting function is of the form:

particle in the p-th cell is given by:
F(r)=qy W(ri - rp)E(rp)
p
where the electric field at the p-th grid point is:

I N /et

E
»T o3 e XY

Ax”;’ Ax‘;
— > —>

Xp-1 Xp Xp+1
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* When the Poisson equation is solved, the force acting on the i-th
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4.2 Motion in Real Space

* The position in real space between collisions is determined by
the coupled set of equations:
a 1
— ="[, E(k(t
= DE()

dk _ gE(r)
dt - h

integration®. For parabolic bands:

= _nk o dk_gE(r)

Tdt m* dt h
t) = x(0)+ v (0)t + 1—x—
X(t)=x(0)+v, 0+ I

1S.E. Laux and M.Fischetti, in Monte Carlo Device Simulation..(ed. K. Hess,
Kluwer 1991), 1-27.
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« In the full band case, they are solved via Runge-Kutta numerical

4.3 Monte Carlo Device Simulation Results

» To start the simulation,it is usual to assume that the device is
charge neutral, in equilbrium.

* For transient simulations it is necessary to establish steady
state conditions

(A) MESFET Example _

eV -1.02V v

Source | Gate Drain

*Hockney and Eastwood, Computer Simulation Using Particles
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Gamma and L-valley distributions of the electrons in a MESFET:

Y R ey W
&2 gL 9&_":\. AN
A B

(e e

Gamma - valley distribution of electrons

L - valley distribution of electrons
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(B) MOSFET Example (50nm channel length):

Conduction Band Edge

" g e o]

Initial State

Equilibrium Final State
Vp=1V,Vg=1V
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Electric field profile along the channel (x-axis)

£ B
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Initial State )
Equilibrium Final State

Vp=1V, V=1V
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Electric field profile along the depth (y-axis)

£ _
= E
ui =
o ui”
@ o
N ©
L i
5 £
i) -—
w - 8

L ¥ . =

h W
liamy oa™
Initial State Final State
Equilibrium Vp=1V,Vg=1V
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Velocity and energy along the

channel
Mean Drift Velocity Average Kinetic Energy
Along the Channel Along the Channel
2.5x10 T T . — 06 T T
7z @ ] °
g 2a0'f B -
O, [ >
7: 9
> 15x10'F E
g 5
o] JF 3 o
° xw'r E ]
> L %
£ saof 3 o
5 g
[a] ] b |
0 rur T I A B i, o O\\|\\\\\\I\|\\\|\\||\\\\\\|\\
0 50 100 150 0 50 100 150
Distance [nm] Distance [nm]

Vp=1V, V=12V
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Current calculation

Two different methods can be used for the calculation of the
current:

« Counting the net charge entering/exiting a contact

« Evaluating the current via electron drift velocity along the x-

axis
7000 [+t 06 et NN I

.. 6000f @ A T osf (b) E
2] E drain contact E| = 2 F E
25 5000F E = F ]
S8 E E < o4f E
82 4000f £ E E
oG F 03 F 3
E':EZ 3000 F -0 E 3
Ry E = F 1
82 2000f E S °?F E
L 3 S oif E
F B! (&) F Vg=14V, V=1V ,I[

ok 1 1 1 1 0 1 1
1 15 2 25 3 0 50 100 150

time [ps] Distance [nm]
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Output characteristics

o

& ]
Silvaco simulations  {
| E—— PR

» Surface-roughness and Coulomb
scattering are not included in the

g osf UL L% The differences between the Monte
2 s 2D MCPS .o 1 Carlo and the Silvaco simulations are
g 04r due to the following reasons:

2 o3[ « Different transport models used

9:’ r __t2y] (non-stationary transport is taking

3 02k 20¥3 place in this device structure).

£ o1l

S i

[a]

Drain voltage v, V]
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e .
0 0.2 0.4 0.6 0.8

1 theoretical model used in the 2D-
MCPS.

4.4 Short-Range Coulomb Force Treatment in particle-

based simulations

and electron-impurity interactions

START Long-range portions of the electron-electron

Initialize Data

Compute Charge

| Solve 3D Poisson Equation |

|Carrier Dynamics | S

Simulation time
en

d2
yes

Collect Data
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Short-range portions of the electron-electron
and electron-impurity interactions

v

Additional scattering mechanisms in the
k-space portion of the Monte Carlo
transport kernel

v

Problems:

©® e-e and e-i interaction terms need to be re-

evaluated frequently to take into account
changes in the distribution function and the
screening length.

® Calculation of the distribution function is

CPU intensive and cannot account for
local variations in the electron density.
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(A) Description of our approach:

—

_.—._ 0 Double-counting of the
. Coulomb force is
target fixed liminated
electron electron e ate
O Limitation: must use
= 10* gy uniform mesh spacing
RS Sl A N 5 nm mesh size ] [0 The generated look-up table
Z Lk gives us information about
= 10" b Coulomb field
_ \ the proper cut-off range
U A}
3 10'| N 1 elegtron e
= ; R .
Q Ve cl
= u ‘|,' ~\'_- < 3
§ v o’ e ° ¢
w P E B A B PR °
5 10 15 20 25 30 . °
Distance from target particle [nm] R,

R, must be greater than
2x the mesh spacing

m Computational Electronics

(B) Correction-Force Modifications

O The use of the simple Coulomb interaction in the source and
drain regions leads to electron trapping which, in turn,
prevents the filling of the channel with electrons.

O The carrier trapping can be eliminated through the use of
modified short-range Coulomb correction force.

E 10° pryr T T P < 60 Talm T
FooN\ om0 e, L™ Tt 1

o ] Q 5 E
N Corrected force for | g 7F ]
=~ 07l 10nm mesﬁ size | > a0F E
BN Coulomb field o Y R CE S 7
=} ] o Sexpet
= c 30 1
= o b —e— linear (b) ]

1 r inear
o 10¢ -l 3 % 200 1 - = - - fixed (c) E
= b o E \ —¥ — Coulomb (d) 1
8 () 0F ¥ ----@--- Poisson 7
@ 4 1
HIOU < .|\'.‘.'.“‘Y—Y—+r—v-.-v—dv

0 5 10 15 0.0 05 1.0 15 2.0

Distance from target particle [nm] Time [ps]

m Computational Electronics
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(C) Description of the 3D Device Simulator

Nominal Doping Density

m Computational Electronics

¢ Dopant charge
assigned to the - .
Generate discrete mesh nodes 3D Poisson <= Device
impurity distribution equatlpn Solver: Structure
ILU, Bi-CGSTAB < Applied
Bias
Dopant atoms Mesh Particle charge
real-space Force assigned to the
position mesh points (CIC, NEC)
Coulomb
Molecular Force Ensemble Monte .
Dynamics routine || ge—— Carl?(tranlsport <+ gci\tterlng
rn
Particle erne ates
real-space
position

(D) Low Field Electron Mobility - Resistor Simulations

0 Doping of the N*- regions:
Np* =10 cmr3,

O Mesh: uniform mesh spacing in all
directions equal to 10 nm.

0 Cases considered:
e Mesh force only

e Mesh force + short-range
e—e and e-— | interaction
terms

0.3 um

Vdrift

Low-field mobility: W =

m Computational Electronics

2500 T T )
— - ®  Experimental data
({) - O  Bulk Monte Carlo results
> 2000 & Resisior simulations B
(E [ A Resistor simulations - mesh force only
S 1500 :— N —:
—_ Pe bg S A A A
C A J
2 1000 en ]
E - AD 8 o 1
o 500 - e o o 1
L A
b= Upe . ?[
ot A | | A
10" 10" 10"

Doping [cm]

O The mesh force only does not give the
correct doping dependence of the low-field
electron mobility.

0 The inclusion of the short-range interaction
terms gives simulation low-field mobility data
in agreement with experimental values.
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(E) MOSFETSs - Role of the E-E and E-/

2.5x10”) T T T T T T T T T - T d| ]
- th e-e and e-i
,f ¢ withe-eande-i ° 1 400 wp ® wi -
& 210°F 5 hesh force only § ° °  mesh force only ]
§ 15x0°F v =v =10V 0o E = 300[ o8, V=LV, V=1V
—_ D G . . S » 1
2> o’f . E 5 w0 h
5 ° S 200[ ot % % 3
c ce®’ . o 2 P9 %o ]
& ofeeece oo 3 5 o ]
5 g 100 %g&b&f %&@MW&%@& 1
5x10°F _source channel drain 3 w channel | drain °m
v SR SRS S S S AN PRI I NI I S W

-1x10 0 40 80 120 160 100 110 120 130 140 150 160 170 180

Length [nm] Length [nm]

800 T T T T T -
Mesh force =
only E

Individual electron
trajectories over
time

Energy [meV]
Energy [meV]

Length [nm]

ob . EREM e N TR
120 130 140 150 160 170 180
Length [nm]
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The form of the distribution function:

Mesh force only

With e-e and e-i

— e
V =0.5V, V =0.8V
c VZM ° ° c 24 )
o 10 i Source 4 & 1wp W
EPN i) 1 34 [V
29 l Drain 1] =8 “ﬁ\
2c { » < L
25 ‘ 3 |
c g cg
S8 i £s r
ks \ i 8
] M4 w
10°% Lot ||”.|.... il [T I

V =05V, V =0.8V
G D

source

drain

Y

0 50 100 150 200 250
Energy [meV]

0 50

Short-range e- eand e - i
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100 150 200 25
Energy [me

400

interactions push some

of the electrons towards higher energies.
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Drain current ID [HA]

Degradation of the Device Output Characteristics:

O The short range e -e and e -i interactions have significant influence on

the device output characteristics.

[0 There is almost a factor of two decrease in current when these two inte-

raction terms are considered.

Ls=35nm, W =35nm, N, =5x10% cm??,
T=2nm, V;=1-16V (0.2V)
80
70i —=&— with corrected

60 F

R
Coulomb
-©--mesh force only

50F
40F
300

20E

105 * E

0é A I A
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Drain voltage VD [V]
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Drain current ID [HA]

Ls=50nm, W =35nm, N, =5x10% cm3
T,=2nm, V;=1-1.6V(0.2V)

80 T
70
60
50
40
30
20
10

——— 7
—e— with corrected Coulomb

-=-0--mesh force only

|‘\|||\|||\\|;
06 08 1 12

riln PR B
0 02 04
Drain voltage VD V]
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