

Surface Micromachining

Chang Liu Micro Actuators, Sensors, Systems Group University of Illinois at Urbana-Champaign

Outline

- Definition of surface micromachining
- Most common surface micromachining materials polysilicon and silicon oxide
 - LPCVD deposition of polysilicon, silicon nitride, and oxide
 - plasma etching for patterning structural layer
 - micromachined hinges fabrication process and assembly technique
 - micromachined dimples and scratch drive actuators
- Other sacrificial processing systems
 - metal sacrificial layer, plastics materials, etc.
- Stiction and anti-stiction solutions
- Multi User MEMS Process (MUMPS)
 - process definition and layer naming conventions

Basic Sacrificial Layer Processing

- Step 1: Deposition of sacrificial layer
- Step 2: patterning of the sacrificial layer
- Step 3: deposit structural layer (conformal deposition)
- Step 4: liquid phase removal of sacrificial layer
- Step 5: removal of liquid drying.

Surface Micromachined Inductor

• Air bridge can be formed using sacrificial etching.

MASS

UIUC

Typical Device Realized by Surface Micromachining

• Etch holes are required to reduce the time for removing sacrificial layer underneath large-area structures.

(b)

Inductor - By Lucent Technologies

Surface Micromachined, Out of Plane Structures

Hinges

• Used in micro optics component assembly.

Hinge Fabrication

- Step 1: deposition of sacrificial layer.
- Step 2: deposition of structural layer.
- Step 3: deposition of second sacrificial layer.
- Step 4: etching anchor to the substrate.
- Step 5: deposition of second structural layer.
- Step 6: patterning of second structural layer
- Step 7: Etch away all sacrificial layer to release the first structural layer.

LPCVD Process

- Temperature range 500-800 degrees
- Pressure range 200 400 mtorr (1 torr = 1/760 ATM)
- Gas mixture: typically 2-3 gas mixture
- Particle free environment to prevent defects on surface (pin holes)

A Laboratory LPCVD Machine

Chang Liu

LPCVD Recipes for Silicon Nitride, Polysilicon, and Oxide

• Polycrystalline silicon

- Polysilicon is deposited at around 580-620 °C and can withstand more than 1000 °C temperature. The deposition is conducted by decomposing silane (SiH4) under high temperature and vacuum (SiH₄>Si+2H₂).
- Polysilicon is used extensively in IC transistor gate
- Silicon nitride
 - Silicon nitride is nonconducting and has tensile intrinsic stress on top of silicon substrates. It is deposited at around 800 °C by reacting silane (SiH_4) or dichlorosilane $(SiCl_2H_2)$ with ammonia (NH_3) SiH_4 +NH₃ -> Si_xN_y + H.
- Silicon oxide
 - The PSG is knows to reflow under high temperature (e.g. above 900 °C); it is deposited under relatively low temperature, e.g. 500 °C by reacting silane with oxygen (SiH₄+O₂-> SiO₂+2H₂). PSG can be deposited on top of Al metallization.
 - Silicon oxide is used for sealing IC circuits after processing.
 - The etch rate of HF on oxide is a function of doping concentration.

Other Structural or Sacrificial Materials

- Structural layers
 - evaporated and sputtered metals such as Gold, Copper
 - electroplated metal (such as NiFe)
 - plastic material (CVD plastic)
 - silicon (such as epitaxy silicon or top silicon in SOI wafer)
- Sacrificial layers
 - photoresist, polyimide, and other organic materials
 - copper
 - copper can be electroplated or evaporated, and is relatively inexpensive.
 - Oxide by plasma enhanced chemical vapor deposition (PECVD)
 - PECVD is done at lower temperature, with lower quality. It is generally undoped.
 - Thermally grown oxide
 - relatively low etch rate in HF.
 - Silicon or polysilicon
 - removed by gas phase silicon etching

Metal Sacrificial Layers

Out Of Plane Devices

Chang Liu

A PECVD Machine

UIUC

Gas Phase Silicon Etching

- XeF₂
 - liquid phase under room temperature
 - $2XeF_2 + Si => 2 Xe + SiF_4$
 - vapor phase under low pressure
 - etches silicon with high speed
 - http://www.xactix.com/
- BrF₃
 - solid phase under regular pressure and room temperature
 - vapor phase (sublimation) under low pressure
 - BrF₃ when reacted with water turns into HF at room temperature.
- Both are isotropic etchants

Organic Sacrificial Layer

- Photoresist
 - etching by plasma etching (limited lateral etch extent)
 - or by organic solvents (acetone or alcohol)
- Polyimide
 - etching by organic solvents
- Advantage
 - extremely low temperature process
 - easy to find structural solutions with good selectivity
- Disadvantage
 - many structural layers such as LPCVD are not compatible.
 - Metal evaporation is also associated with high temperature metal particles, so it is not completely compatible and caution must be used.

Criteria for Selecting Materials and Etching Solutions

- Selectivity
 - etch rate on structural layer/etch rate on sacrificial layer must be high.
- Etch rate
 - rapid etching rate on sacrificial layer to reduce etching time
- Deposition temperature
 - in certain applications, it is required that the overall processing temperature be low (e.g. integration with CMOS, integration with biological materials)
- Intrinsic stress of structural layer
 - to remain flat after release, the structural layer must have low stress
- Surface smoothness
 - important for optical applications
- Long term stability

Stiction = Sticking and Friction

Origin of Stiction

Antistiction Method I - Active Actuation Method

- Use magnetic actuation to pull structures away form the surface
 - reduced surface tension length of arm
- Limitations
 - only works for structures with magnetic material.

Antistiction Method II -Organic Pillar

- Use organic pillar to support the structure during the liquid removal.
- The organic pillar is removed by oxygen plasma etching.

Antistiction Drying Method III - Phase Change Release Method Supercritical CO₂ Drying

- Avoid surface tension by relaying on phase change with less surface tension than water-vapor.
- * p. 128-129
- Supercritical state: temp > 31.1 °C and pressure > 72.8 atm.
- Step 1: change water with methanol
- Step 2: change methanol with liquid carbon dioxide (room temperature and 1200 psi)
- Step 3: content heated to 35 °C and the carbon dioxide is vented.
- Free-standing cantilever beams upto 850 µm can stay released.

Super Critical Drying

- When a substance in the liquid phase at a pressure greater than the critical pressure is heated, it undergoes a transition from a liquid to a supercritical fluid at the critical temperature.
- This transition does not involve interfaces.
- Criteris
 - chemically inert, non-toxic
 - low critical temperature
- CO₂
 - critical temperature 31.1 °C
 - critical pressure 72.8 atm.(or 1073 psi)

- Exchange methanol with liquid CO2 at 25°C and 1200 psi
- closeoff vessel and heated to 35 °C, no interface is formed.
- Vent vessel at a constant temperature above critical temperature.

Antistiction Method III - Self-assembled Monolayer

- Forming low stiction, chemically stable surface coating using self-assembly monolayer (SAM)
- SAM file is comprised of close packed array of alkyl chains which spontaneously form on oxidized silicon surface, and can remain stable after 18 months in air.
- OTS: octadecyltrichlorosilane (forming C₁₈H₃₇SiCl₃)

Result of SAM Assembly

- Surface oxidation: H2O2 soak
- SAM formation
 - isopropanol alcohol rinse
 - CCl₄ rinse
 - OTS solution
 - CCl₄ rinse

Short Pulse Laser Irradiation

