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Density Functional Theory
for
Electrons in Materials

OUTLINE

e The many-body electron problem

e Hohenberg-Kohn Theorems

e Kohn-Sham Ansatz

e Functionals for Exchange and Correlation

— LDA - Local Density Approximation
— GGA - Generalized Gradient Approximations

e Solution of the Kohn-Sham ”Schrodinger-like” Equations
e Results: H, He, Hy

e Results: Solids

e Results: Molecules: GGA

e Failures!



C The Fundamental Hamiltonian )
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e Born-Openheimer Approximation: There is only one
small term, the kinetic energy of the nuclei. If we
omit this term, the nuclei are a fized external po-
tential acting on the electrons

e The final term is essential for charge neutrality — but
is a classical term that is added to the electronic part

e The first line is the key problem for ab initio
prediction of the properties of materials

e The ground state energy as a function of the positions
of the nuclei determine:

— Stable Structures — Phase transitions

— Mechanical Deformations — Phonons, etc.
e The excited states determine ”electronic” properties:

— Electronic Bands, Optical properties, etc.



C Many-Body Electron Problem )

The electron Hamiltonian is (we will use atomic units
(h = m, = 1) to simplify some equations below)

H=T+ Vo + Vins, (2)

where T is the kinetic energy of the electrons, V., is the
potential acting on the electrons due to the nuclei,

Vit = > Vi(lri = Rul), (3)

A

Vint 18 the many-body electron-electron interaction.

The total energy is the expectation value

(VIHY) _ oy v i 3V (P)n(r
<\If|‘1/> —<H> <T>+< mt>+/d ‘/611515() ()

(4)
The ground state wavefunction Wy is the state with
lowest energy; that obeys the symmetries of the particles

E —

and all conservation laws.



C “Hellmann-Feynman” Theorem )

The force on any nucleus is determined by the wave-
function, despite the fact that the wavefunction changes
as the atoms move.

F; = o _ —/dsrn(r)
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(5)

This follows because the energy is at an extremum with
respect to any variations in the wavefunction at the exact
solution. Only the explicit dependence of the nulcear
position is needed.

The force is determined by the electron density! (Feyn-
man, 1939)

(The ideas also hold for non-local pseudopotentials, but
the force depends upon the wavefunction and not just the
density.)



C

Hohenberg-Kohn Theorems

)

e Theorem I: For any system of electrons in an ex-

ternal potential V,;(r), that potential is determined
uniquely, except for a constant, by the ground state
density n(r).

Corollary I: Since the hamiltonian is thus fully deter-
mined, except for a constant shift of the energy, the
full many-body wavefunction and all other properties
of the system are also completely determined!

Theorem II: A universal functional for the energy
E[n] of the density n(r) can be defined for all electron
systems. The exact ground state energy is the global
minimum for a given V.(r), and the density n(r)
which minimizes this functional is the exact ground
state density.

Corollary IT: The functional E[n] alone is sufficient to
determine the exact ground state energy and density.
Excited states of the electrons must be determined
by other means.

Comment: The exact functionals are unknown and
must be very complicated!



C Proof of Hohenberg-Kohn Theorems )

Proof of Theorem I:

Suppose that there were two different external poten-
tials Ve&t) (r) and Ve(xt)( ) with the same ground state den-
sity n(r). The two external potentials lead to two differ-
ent hamiltonians, H® and H®. which have different
ground state wavefunctions, ¥ and ¥ which are hy-
pothesized to have the same density n(r). Then:

BY = (WO O < (W FOw),  (6)
which leads to

B0 < B 4 [dr V() - VA, ()
But changing the labels leads to

E® < BV 4+ [+ {VAE) - vO®In). (©)

which is a contradiction!

Theorem II (Not proved here) leads to

Eykln] = T[n]+ Viuln] + [ drVeu(r)n(r)
Frx([n] + [ drVeu(r)n(r) 9)



C The Levy-Leib Functional )

The Hohenberg-Kohn Theorems tell us nothing about
how to construct a functional. Levy and Lieb gave a
derivation that shows what the the functional really is:
the minimum energy for all possible many-body wave-
functions having the given density.

The idea of Levy and Lieb (LL) is to define a two-step
minimization procedure:

Err[n] = min [(O|T0) + (U|Vi| V)] + [ d*rVi(r)n(r) + Epp

U—n(r)
= Fpp[n]+ /d3TVewt(r)n(r) + Eqy, (10)
where the Levy-Lieb functional of the density is defined
by
Frrn| = ‘Ilril;lr(lr)<\IJ|T + Vint|¥). (11)

In this form Fpy[n] is manifestly a functional of the den-
sity and the ground state is found by minimizing Err[n].



C The Kohn-Sham Ansatz

)

The Kohn-Sham approach is to replace the original
difficult interacting-particle hamiltonian with a different
hamiltonian which could be solved more easily.

Kohn-Sham Hamiltonian for non-interacting “elec-
trons” assumed to have the same density as the true
interacting system

2

Hep = =5 V" 4 Veys (1), (12)
where .
neps(r) = 2 |4i(r) |7, (13)
and the kinetic energy T,y is given by
Tepr = s > (Wil V2 i), (14)
2m =1

The Kohn-Sham energy is the sum

~

E = Teff+/ %xt<r>neff(r)dT+EHartree[neff]+Exc[neff]7
(15)



C The Kohn-Sham Equations )

The ground state can be found by minimizing with
respect to the independent-electron wavefunctions ;(r)

OF n] 0Ty OFoiher Oness(T)
Opi(r)  Oi(r)  Oness(r) OYi(r)
subject to the orthonormalization constraints
(Wils) = 64 (17)
The Lagrange multiplier method constraints leads to the
Kohn-Sham Schroedinger-like equations:

=0  (16)

(Hefp — €)ipi(r) =0 (18)
where the ¢; are the eigenvalues,
2
H, = — 24V, . 19
pi(0) = =5 -V Veys(r) (19)

and

. aEHart 8Exc
Vers(r) = %mt<r)+aneff(r) +0neff(1‘) (20)

= %g;t(r) + VHart[neff] + ‘/;:c[neff]- (21)

The total energy can be written

E= %1 fi_%/VHart(r>neff(r)dr‘l‘(ExC[n]_/ (Vacness(r)dr)
- 22)

10



@IOW Chart for Kohn-Sham Calculation

Figure 1: Schematic representation of the self-consistent loop for solution
of the Kohn-Sham equations. In general one must iterate two such loops
simultaneously for the two spins, with the potential for each spin depending
upon the density of both spins.

Self-Consistent Kohn-Sham Equations

Initial Guess

nt(r),n*(r)

¥
Calculate Effective Potential

V(r) = Vear(r) + VirareIn] + V7 [nT, n']

l

Solve KS Equation
(- 4w+ 7o) v = spur

l

Calculate Electron Density

no(r) = Y0, 7 [wg ()|

Output Quantities

Compute Energy, Forces, Stresses
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CExchange-Correlation Functional Exc[nD

The Exchange-Correlation energy is defined by

Fyk[n] = T[]+ Viu[n] = (T) + (Vin)
Teff[n] + EHaTtree [n] + Exc[n] (23)

where

n(r)n(r’

1
EHartree[n] — §/d37“d37“, |F— I_.,,|

Key points:
o T.¢r is really calculated from the wavefunctions!

e F,.[n] contains all the difficult terms is a functional
of n by the Hohenberg-Kohn Theorem.

e F,.[n] is reasonably approximated as approximately
local — unlike T, ¢[n] and Enariree[n]

12



C Exchange-Correlation Hole )

(See, e.g., Many-Particle Physics by Mahan)

Around each electron at point r other electrons are
excluded to form a hole at points ', n,.(r,r’).

e The Pauli principle (exchange) causes there to be a
hole with ezxactly one missing electron compared to
the average density of all electrons including the one
under consideration.

e Correlation causes rearrangement but still exactly
one missing electron.

e The energy is given by the interaction with the hole
Tize averaged over all coupling constants e* (not
proved here)

Byln] = [ drn(r) [ar ™) (o)

v —r|

13



C LDA - Local Density Approximation)

Assume F,.[n] is a sum of contributions from each
point in space depending only upon the density at each
point independent of other points. Then

Eyln] = /d%n(r)exc(n(r)) (26)
where €,.(n) is the x-c energy per electron

e Since €,.(n) is assumed to be universal, must be the
same as for homogeneous electrons of density n.

e Exchange (e.g., Aschroft and Mermin, p. 411)

0.458
€z(n) = — . Hartree, (27)

where r, is the average distance between electrons

given by 4rd = 1.

e Correlation found by:

— RPA approximation - good at high density

— Interpolation between low and high density - Wigner
(1934), Lindberg and Rosen (1970), ...

— Essentially exact Monte Carlo Calculations done
by Ceperley and Alder, 1980

14



C Kohn-Sham Equations in the LDA )

In the LDA the potential in Kohn-Sham equations is
found as a simple derivative:

h2

2
- e . 2
2mev + Vess(r) (28)

Hepp(r) =

and

aEHart aExc
Verr(r) = Vou(r) + + 29
ff( ) t( ) aneff(r) aneff(r> < )

= %xt(r) + VHart[neff] + ‘/xc[neff]° <30)

where

OEr. _ Onepp(r)ene(ness(r))

Vaelr) = Oneyy(r) Oney(r)

(31)

The equations are solved self-consistently with the den-
sity which results from the eigenfunctions of the indepen-
dent electron equations

epsl) = £ (o) (32)

15



C Kohn-Sham Functional )

e The Kohn-Sham solution can be considered a func-
tional of the potential V,

‘/eZ?f N ’9/}2 N nout s EKS[nout]

The energy is given by Eq. 15 (repeated here)

E = Teff+/ Vvext<r>nOUt(I')dr_"EHartreenOUt]+Excnom]7
(33)

e This is a variational expression, 7.e., the correct en-
ergy is the minimum

e It operationally defines the functional Ex g[n°"]; how-

ever, it is not an explicit functional of n%

16



C

Explicit Density Functional

)

e An alternative is to define the energy in terms of

the wnput density, ¢.e., a true density functional.
The form proposed by several authors (Weinert, et
al (1985), Harris (1985), Foulkes (1989)) is:

. N 1 |
En™ = Y ¢ — 5 / Virard(r)n™ (r)dr

- /:((%c(nm(r)) — €4c(n™(r)))n""(r)dr

where the eigenvalues are found from the Kohn-Sham
hamiltonian with V,s; given by the input density

nm(r)

The solution is the same as the Kohn-Sham solution,
but this expression is not variational. Usually the
energy approaches the correct energy from below. A
saddle point.

The simplest case is where the input density is guessed
and never modified

Example: A sum of atomic densities is very accurate
in many cases!

17



C LSD - Local Spin Density Approx. )

e It is straightforward to generalize the Hohenberg-
Kohn and Kohn-Sham approaches to functions of
two densities ny and n;.

e The exchange energy is easily generalized since ex-
change is always a sum of terms for 1 and | spins.

e Correlation involves both spins, so it must be parametrized
in terms of both ny and n;.

e Thus we are led to the LSD form E,.nq,n;]. All
widely used forms are based upon fitting the ener-
gies found by Quantum Monte Carlo calculations for
interacting electrons done by Ceperley and Alder.

e Parametrized forms given by Perdew and Zunger,
1981, and Vosko, Wilk, and Nusair, 1980.

18



<: GGA - Result for H, :)

Figure 2: Energy of H, vs. distance (From O. E. Gunnarsson). The limit at
large distance are separated atoms. LSD is needed to allow a spin on each
atom and get a reasonable answer. (But this is really incorrect because it
breaks the symmetry.)
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CGGA - Generalized Gradient Approx.)

Why Kohn got a Nobel prize in Chemistry!

DF'T is now widely used in chemistry because the GGA
greatly improves the estimates of dissociation energies.
The GGA lowers the energy of systems with larger gra-
dients, i.e., to lower the energy to dissociate a molecule
into parts.

e Fixchange and Correlation are not really local.

e Next approximation: consider €,.[n] a function of the
density and the gradient of the density at each point

e The function is expressed in terms of the reduced
density s = | "' , where kp = (372n)'/3.

e Discussion of forms in paper:
J. P. Perdew and Kieron Burke, ” Comparison Shop-
ping for a gradient-corrected density functional”, Int.
J. Quant. Chem. 57, 309 (1996).

e Programs for the LDA and various GGA’s are avail-
able from:
http://www.phy.tulane.edu/ kieron /dft.html

20



CGGA - Generalized Gradient Approx.)

There are many GGA’s because the approximations
are not universal. The effect of all of them is too:

e Increase the magnitude of the exchange energy, i.e.,
lower the total energy

e Decrease the magnitude of the correlation energy,
i.e., raise the total energy. But this is a smaller effect
than the exchange.

The effects can be expressed as a factor F,. multiplying
the usual local exchange energy

ECCAT Y] = /d‘o’rn(r)exc(nT, nt, Vnl, Vn')
= /d?’rn(r)ehom(n)Fxc(nT, nt, Vnl, V'), (34)

T

where F. is dimensionless, €"°™(n) is the exchange en-

ergy of the unpolarized gas, and we can define a reduced
dimensionless gradient proportional to the fractional vari-
ation in density normalized to the average distance be-
tween electrons ry o< 1 / k.

_|Vn| 'Vn|

T (ke 2(3m) () (35)

21



Figure 3: Exchange enhancement factor F), as a function of the dimensionless
density gradient s for various GGAs. (From paper by H. Kim, similar to
Figure 1, of Perdew and Burke (1996) but for a larger range of s).
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Figure 4: Exchange enhancement factor F, as a function of the dimensionless
density gradient s for various GGAs. (See caption of Fig. 3).
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C Orbital Functionals E[¢;] - OEP )

The success of the Kohn-Sham approach over Thomas-
Fermi is that the kinetic energy is not and explicit
functional of the density. It is an orbital functional.

This can also be done with other terms, e.g., the ex-
act Hartree-Fock expression for exchange involves the
orbitals. In density functional theory this leads to the
“Optimized Effective Potential” (OEP) method, where
the potential varied to give the lowest energy for orbitals
that are eigenfunctions of that potential.

Recent work (see review by Grabo and papers by Staedele
and others) show there is a large improvement in the ex-

cited states using the OEP with exchange (“exact ex-
change” or EXX)..

23



Figure 5: Gaps of common semiconductors calculated using LDA and EXX.
Note that Ge is a metal in the best LDA calculations, but the gaps are in
much better agreement with experiment using EXX. From Staedele, et al.)
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