Statistics Formulas (last modified 9/7/99)

Table 1: Names and formulas for statistical quantities. The first column lists the exact definitions. The second column indicates how the formulas are used in practice, when only a finite data set is available. Capital letters represent the exact quantities, small letters are estimates. Note that σ is used as general notation for standard deviation of data, average, etc., so be careful for what it stands.

Name	Formula	Estimator
Data ("Trace")	$A_k; -\infty < k < +\infty$	$A_k; \ 1 \le k \le N$
Equilibriated Data Range	$-\infty < k < +\infty$	$k_1 \le k \le k_2; \ N_{eq} = k_2 - k_1 + 1$
Mean of A	$\langle A angle = \lim_{N o \infty} rac{1}{N} \sum_k A_k$	$a=rac{1}{N_{eq}}\sum_{k=k_1}^{k_2}A_kpprox\langle A angle$
Variance of A	$V = \langle (A - \langle A \rangle)^2 angle$	$v = \frac{1}{N_{eq}-1} \sum_{k=k}^{k_2} (A_k - a)^2$
Standard Deviation of Data	$\sigma = \sqrt{V}$	~~~1
Autocorrelation of A	$C_A(i) = rac{1}{V} \sum_{k=1}^{N-i} \langle (A_k - \langle A angle) (A_{k+i} - \langle A angle) angle$	$c_A(i) = rac{1}{v} rac{1}{N_{eq}-i} \sum_{k=k_1}^{k_2-i} (A_k-a)(A_{k+i}-a)$
Correlation Time of A	$\kappa = 1 + 2\sum\limits_{i=1}^{\infty} C_A(i)$	$\kappa = 1 + 2\sum_{i=1}^{i_{cutoff}} c_A(i)$
Effective Number of Points	$N_{eff} = \lim_{N o \infty} rac{N}{\kappa} o \infty$	$N_{eff}=rac{N_{eq}}{\kappa}$
Error of Mean	$\sigma = \sqrt{rac{V_A}{N_{eff}}} ightarrow 0$	$\sigma = \sqrt{rac{v_A}{N_{eff}}} = \sqrt{rac{v_A \kappa}{N_{eq}}} \propto rac{1}{\sqrt{N_{eq}}}$

The block transformation transform function can be used to reduce the autocorrelation of a set of data. For a blocking size of m data points per block, the new blocked data A' take the form:

Der block, the new blocked data
$$A'$$
 take the $A_k'=rac{1}{m}\sum_{i=0}^{m-1}A_{m(k-1)+i};\ 1\leq k\leq rac{N_{eq}}{m}$ $N'=N/m$ $\kappa'pprox\kappa/m$ $a'=a$

Blocking should be used until $N' \approx N_{eff}$, or equivalently $\kappa' \approx 1$. If you know the approximate correlation time, blocking your data can be an easy way to remove autocorrelation in your programs.

Please email any questions or corrections to ceperley@uiuc.edu