Entropy and Temperature of a Thermodynamic System
(Atomic Scale Simulation MatSE 390AS)

Entropy and Temperature arise from the algebra of ”"big” numbers. The logarithm of the number of accessible
states of the system is the entropy and of great importance to the thermal properties of a system. (This follows
Kittel " Thermal Physics”)

Consider two systems only in thermal contact. The systems have particle number, N; and N9, and energy, Eq
and Eo. When in thermal contact the combined "new system” now has N=N; + Ny particles and total energy

What is the degeneracy of states that are accessible? The degeneracy function is g(N,E). For the
combined system,

<E

g(N,E) =" g1(N1, E1)g2(N2, E — Ey) (1)
Ey

Sum is over all possible accessible states E;. The product g;gs is the number of accessible state for the combined
systems for energy Fj.

For statistical mechanics, a very important feature of this product is that it must have a maximum for
some value E; = E, the most likely energy. It is an extremely sharply peaked. (Consider g;(z) = e @ and
g2(z) = e®=2° The product is basically zero except for a narrow region around x=4, and it is 10'3 smaller than
9:(0) and gy(8)11)

Consider the extremal properties of this distribution.

0g1 ) ( 492 )
0=dg= (= dE — dE. 2
g <5E1 N192 1+91 585 )y, *2 (2)
and we have dE; + dEy = 0. (We shall assume here that this is a maximum, which can be proved.) Then, the
most probable configuration of the combined system (using dE; = —dE3) gives
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Let us define ENTROPY as S(N, E) = Ing(N, E) and INVERSE TEMPERATURE as ({}y)N =71, We

have for the maximal probability and equilibrium configuration the 77 = T5, the temperatures must be equal.
Note also that equilibrium is reach only when the number of accessible states are a maximum.

Note also that, in this maximal state, S =Ing;g2 = Ing; + Ings and the Entropy is Additive.

Send any questions or corrections to duanejQuiuc.edu
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Gibbs and Boltzmann Distribution

For Statistical Mechanics or our simulation, we are interested in properties where one of the systems in contact
is a very large thermal reservoir, i.e. Np >> N; and Er >> FE;. Let us even suppose that the systems are now
in thermal and diffusive contact, so they exchange energy and particles.

What are the statistical properties of the system? We consider an ensemble consisting of indentical
copies of the ”system + reservoir” having accessible states only.

What is the probability to find the system with N particles and in the state s of energy ¢,?
Clearly the probability P(Ng,e€s) proportional to the number of accessible states of the RESERVOIR. Because
when we specify the state of the system, i.e. N and €z, the number of accessible states can only arise from the
reservoir: g(sys + res) = g(sys)g(res) = g(res) as g(sys) = 1 (for it was specified). Therefore,

P(Ns,es) < g(N — N, E — E) (5)

where g(N,E) depends only on the reservoir. Notice that this relation is for the probability of the system, yet is
appears to depend on the make up of the reservoir (strange indeed), but only (as we shall see) on the temperature,
T, and chemical potential, u, of the reservoir.

As we do not know the proportionality constant, let us consider the ratio of probabilities of two states:

P(Ni,e1) _g(N — Ni,E - Ey)

P(Ny,e3)  g(N — No, E — Ey) (6)

Notice that N — N; >>> N; and the g(N,E) are extremely large numbers arsing from the reservoir. So, to avoid
big numbers we can define the Entropy as S(N, E) = Ing(N, E) and work with the logarithms.

PN €e1) _ S(N-N1B-B)-S(N- N>, B I) (7)
P(N27 62)

Because the reservoir is very large compared to the system, we may expand to first-order (this can be verified as
OK) to get AS in the exponent using Taylor’s Series expansion.

AS = —(N1— N) (g—;)E — (B — E») (%)N (8)

r=(s), 5=, ®

P(N1,61) e_(El_uNl)/T
P(Ny,e5) e~ (B2—uN2)/T

By defining

We immediately get that

(10)

The numerator is the Gibbs’ probability distribution for canonical ensemble, whereas for constant N the yN
drops out and we have the Boltzmann distribution.
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Gibbs and Principle of Maximum Entropy

Gibbs was actually more clever. He introduced the ”index of probability” defined as Ingy and its ensemble
average S = [ dVrgn Ingy. Under the condition that < E >= [ dVr Egy, microcanonical contraint, Gibbs showed
that S was a maximum when gy = g% = ePF—E) — 5 g0 that S = In g% for equilibrium.

This is, in effect, Gibbs’ principle of maximum entropy, a Laplacian-like view of probability (not a frequency
or counting-occurances-type viewpoint). Essentially, given any constraint, such as constant E, and the fact that
the probability must sum to one, you can maximize the "entropy” S = —K ), P;In P; and obtain any of the
distribution that we know, such as microcanonical for constant E, etc. The distributions such as Fermi-Dirac and
Bose-Einstein occur because of how the states €; are occupied, like 1 or 0 for Fermions and 1,2,...infinty for Bosons.

More generally, this entropy S = —K ), P;In P; is called the Shannon Informational Entropy. With this gen-
eral entropy and utilizing Maximum Entropy Method, you may find the most probable state for anything that has
informational entropy: encryption, image analysis, etc. As an example, using the astronomical data provided by a
friend, Laplace predict that Jupiter had to have an additional moon (not yet observed) to explain the deviation in
the observed data. He even predicted it mass, being only off about 10% from today’s value. (Ah, to be as amazing
as Laplace!)

”Entropy” again results from the algebra of large numbers and what it means to be the most probable or
average, whether it is thermodynamic state or something else. Using this Principle of Maximum Entropy and a
few results from Probability Theory regarding correlated variables, most all of Statistical Mechanics can be de-
rived in a few lines. While less straightforward, such an approach can also be used for non-equilibrium Statistical
Mechanics (see "Introduction to Statistical Mechanics, vol 1: Equilibrium”, Grandy, Jr. 1987)

An outstanding discussion of all these points, as well as Erogdicity, see " The Principle of Statistical Mechan-
ics”, R.C. Tolman, 1937.

Most importantly for simulation class is that if we pick the correct distribution function for our problem then
we have gone quite far into be able to obtain averages via simulation. It is our concern later to learn how to choose
the probability distribution for our ensemble cleverly. See Main notes.
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