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First-Principles Molecular 
Dynamics

• Molecular dynamics: an atomic-scale simulation 
method
– Compute the trajectories of all atoms
– extract statistical information from the trajectories

Atoms move according to 
Newton’s law:

i i im =R F

Water on a silicon carbide surface



First-Principles Molecular 
Dynamics

• Why “First-Principles”?
– Avoid empirical models of interatomic forces
– Use fundamental principles instead: Quantum 

Mechanics
– Must describe ions and electrons consistently and 

simultaneously

At each time step:

1) Compute the electronic 
structure

2) Derive interatomic forces

3) Move atoms



First-Principles Molecular 
Dynamics Applications

• Nanoscience
– FPMD captures the complex 

interplay between chemical, 
electronic and optical properties

J.Y. Raty, F. Gygi, and G. Galli, Growth of carbon nanotubes on metal 
nanoparticles: A microscopic mechanism from ab initio molecular 

dynamics simulations, Phys. Rev. Lett. 95, 096103 (2005).

G. Cicero, E. Schwegler, J. Grossman, F.Gygi, G. Galli (2006)



First-Principles Molecular 
Dynamics Applications

• Materials in extreme conditions

F. Gygi and G. Galli, Ab Initio Simulation in Extreme 
Conditions, Materials Today 8, 26-32 (2005).

A. A. Correa, S. A. Bonev and G. Galli, Carbon under 
extreme conditions: Phase boundaries and electronic 

properties from first-principles theory,
PNAS 103, 1204-1208 (2006). 



Large parallel platforms:  
BlueGene/L



Qbox: a Large-Scale Parallel 
Implementation of FPMD

• Qbox is a C++ implementation of FPMD
• Designed for scalability up to >104 CPUs
• Development started in 2003
• Built on several optimized libraries developed 

elsewhere:
– PBLAS
– ScaLAPACK
– FFTW
– MPI
– Apache Xerces-C



Qbox code structure
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History of FPMD code performance
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The performance of 
FPMD codes has 
doubled every 8 months

(faster than Moore’s law)



Future Challenges and CI

• Moving FPMD to petascale platforms
• Developing better algorithms
• Data management issues / Standards



The road to petascale simulation
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The road to petascale simulation

• “At 200 TF we are 1/5 of the way there”,      
but…
– The architecture of petascale computers is still 

changing
– Scaling of the current FPMD design to petascale is 

unlikely
• A complete rewrite of FPMD codes will likely be 

necessary 



The road to petascale simulation

• Petascale code optimization is a new “science”
– Consider debugging your code on 32,768 CPUs
– Need new tools for SW development

• e.g. visualization of message traffic
– New optimization issues

• Multicore chips
• Heterogeneous architectures
• Data flow becomes more critical than Flops

• Optimization is essential
– 1% of a petascale platform is a terrible thing to waste



The road to petascale simulation

• Petascale software will be more complex
– complexity is driven by machine architecture, number 

of CPUs
• Petascale code development must start early

– Qbox code development took 3 years, started well 
before BlueGene/L hardware was built

– Hardware lifetime is becoming comparable to code 
development time (~3-5 yrs)



Developing better algorithms

• Current FPMD simulation cost is O(N3)
– (N = # of electrons)

• This is currently the main obstacle to applying 
FPMD to more complex problems

• Need research in linear-scaling algorithms (O(N))
– Need for controlled accuracy

J.-L. Fattebert and F. Gygi, “Linear-scaling first-principles 
molecular dynamics with plane-waves accuracy”, Phys. 
Rev. B 73, 115124 (2006).



Data Management

• FPMD simulations generate large datasets 
(many TB) 

• Need for large, www-accessible repositories
– Accessibility is critical to ensure validation of data by 

different groups (need high bandwidth networks)
– Reproducibility of simulation data is an important goal

• a “Quality of Science” issue
– Need to develop new ways to limit the data flow

• e.g. application-specific compression algorithms



Data Management

• Need for data standards
– Today: 4 community codes = 4 different data formats
– New standards should be XML-based
– Developing XML standards (schemas definitions, etc.) 

is a costly, iterative process
– Use automatic data validation
– New standards should be code-neutral
– Our effort: http://www.quantum-simulation.org

QSO.org

ABINIT

PWscf
Qbox

VASP

http://www.quantum-simulation.org/


Data Management

• Need to encourage the development of XML-
aware codes
– Example: all Qbox I/O is valid, well-formed XML
– Integrating XML parsers in application codes incurs a 

maintenance cost
– May require new CS developments (e.g. parallel XML 

parsers)
• Need for web-aware codes

– Example: definition of a carbon pseudopotential in 
Qbox:
[qbox] species carbon http://www.quantum-
simulation.org/examples/species/carbon_pbe.xml



Is the code doing the right thing? 
Code verification

• Encourage the development of well documented 
test suites
– time-consuming process
– need dedicated computing platforms just for testing!

• Need for a few competing community codes
– Cross-verification is an invaluable tool
– We must resist the urge to completely eliminate 

duplication of effort



Open source licenses

• Variants of open-source licences abound
– GNU-GPL, BSD, MIT, etc..

• Should NSF help software developers make the 
“right” choice?
– NSF endorses one license, or
– NSF creates the NSF license



Summary

The successful solution of a realistic problem in applied 
mathematics requires the fusion of four distinct 
ingredients: 

1) knowledge of the subject area of the problem

2) knowledge of the relevant mathematics

3) knowledge of the relevant computer science

4) a talent for selecting just what part of all this 
knowledge will actually solve the problem, and ignoring 
the rest.

George E. Forsythe
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