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Informatics

From Wikipedia, the free encyclopedia

Not to be confused with Information science.

Informatics includes the science of information
and the practice of information processing.
Informatics studies the structure, behavior, and interactions of natural and artificial 
systems that store, process and communicate information. It also develops its own 
conceptual and theoretical foundations. Since computers, individuals and organizations 
all process information, informatics has computational, cognitive and social aspects.
Used as a compound, in conjunction with the name of a discipline, as in medical 
informatics, bio-informatics, etc., it denotes the specialization of informatics to the 
management and processing of data, information and knowledge in the named 
discipline.

Informatics should not be confused with information theory, the mathematical study of 
the concept of information, or Library and information science a field related to libraries
and related information fields.

http://en.wikipedia.org/wiki/Information_science
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Information_processing
http://en.wikipedia.org/wiki/Information_theory
http://en.wikipedia.org/wiki/Library_and_information_science
http://en.wikipedia.org/wiki/Library


Problem: no signal faster than speed of light

Since 1996 (at least)

computing on supercomputers requires parallel computing

Prediction: in 10 years almost all PCs will have >8 PEs
(Processing Elements)



BlueGene/L

2x2x32x32x64 = 131,072  PEs



Perfect Scalability

For large NPE, utilization independent of NPE

For large NPE, PE memory independent of NPE

Number of interconnects O(1) per PE

NPE = # Processing Elements

Non-trivial parallelization

Amount of work O(NPE)



How Computational Physicists Count

1 body

2 body

Too Many bodies

use

Statistical Mechanics

2 PEs

=

2 grad students

1 PE (Processor Element)

=

1 grad student

Too Many PEs

Too many grad students

use

Statistical Mechanics
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Complicated Behavior & Informatics 
from Nonequilibrium Surface Growth Models

Department of Physics and Astronomy



Motivation for PDES model

Parallel computing



Non-equilibrium surface growth model:  PDES model

-ln( r )

0<r<1

Replenish 
when 
needed

Start with flat interface (in d dimensions)

In first step, all ‘drops’ fall



PDES model

-ln( r )

0<r<1

Replenish 
when 
needed

For each step, all ‘drops’ fall ONLY if the 
surface underneath is at a local minimum



PDES model

Note: at each step t all ‘drops’ fall 
at the same time

t t + 1



PDES model

t=0 t=1

t=11



Discrete Event Simulations

• DES (Discrete Event Simulations)
* State changes are discontinuous
* Times of state changes are random

PDES

Parallel Discrete Event Simulations



PDES Technology Implications
• All today’s largest computers are massively parallel computers

• Must make good use of parallelization in programs for efficiency

• Parallel Discrete Event Simulations (PDES)

o Used in military simulations and training (‘what-if’ scenarios)

o Used in homeland security simulations and training

o Used in modeling of factory deliveries

o Used in modeling temporal drug concentrations  in patient models

o Used in simulating materials and materials failure

o Used in modeling switching in cellular and wireless networks

o Used in ecological modeling

o Used in modeling epidemiological models

o Used in electric power grid simulations



Information-Driven Systems

Trivial Non-Trivial

Parallelization

Example: 
Dynamic Monte Carlo of Ising spins
with nearest-neighbor interactions

Dynamic Monte Carlo simulations

Randomly pick a spin

Decide if spin will be flipped



Physical processes and logical processes

Physical System
spatially extended system of NL
spins, arranged on a lattice

Computing System
L PEs: each carries N lattice 
sites, Nb of which are border sites

Physical Events/Processes
random spin flipping

Logical Events/Processes
each PE manages the state of the 
assigned subsystem. 

asynchronous
nature of
physical 

dynamics

asynchronous
system of 

logical 
processes

discrete event: the spin flip discrete event: the state update



Parallel discrete-event simulation
for spatially decomposable asynchronous cellular automata

•Spatial decomposition on lattice/grid
(for systems with short-range interactions
only local synchronization between subsystems)

•Changes/updates: independent Poisson arrivals

Each subsystem/block of sites, carried by a
processing element (PE) must must have its
own local simulated time, {τi} (“virtual time”)
Synchronization scheme
PEs must concurrently advance their own
Poisson streams, without violating causality

τi

PEi

This is the PDES model



Non-equilibrium surface growth
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Coarse graining for the stochastic time 
surface evolution
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Random-walk profile: short-range correlated local slopes

Korniss, Toroczkai, Novotny, Rikvold, PRL ‘00

•Θ(…) is the Heaviside step-function
•ηi(t) iid exponential random numbers

M



“Simulating the simulations”
Universality/roughness (d=1)
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exact KPZ:
β=1/3
α=1/2



Utilization/efficiency
Finite-size effects for the density of local minima/average growth rate
(steady state):
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Implications for scalability

Simulation phase: scalable

Measurement (data management) phase: not scalable

)1(2

.
α−∞ +〉〈≅〉〈

L
constuu L

〈u〉 asymptotic average rate of progress of the 
simulation (utilization ) is non-zero

α22 ~ Lw L〉〈w

Virtual Time Horizon belongs to KPZ universality class

GREAT News ----------- Bad News



Quenched random (Small World) 
connections
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Slopes are still short-range correlated: non-zero 〈u〉

w



Improve efficiency

Mixing

KPZ + RD

+



Simulation model for conservative PDES

Time-step t : index of the simultaneous update attempt
Updates at t : independent Poisson-random processes

If update at t : hk(t+1) = hk(t) + ηk(t) 

Update rule

choose a neighborhk(t) ≤ min{hk-1(t), hk+1(t)}

hk(t) ≤ hnn(t)

choose a lattice site

interior

N>2

border

hk(t) ≤hnn(t)

N=1 N=2

deposition at t
local height increment δh

Virtual Time Horizon (VTH)

update at t
local time increment δh

Properties of the algorithm
are encoded in the VTH



Diagnostics: utilization of the parallel processing environment
<u

(L
; N

)>

PRB 69, 075407 (2004)

Steady-state simulations
v(t) = <u(t)> μ P



Actual implementation

1. Local time incremented
2. Randomly chosen site
3. If chosen site is on the boundary,

PE must wait  until τ≤min{τnn}

Dynamics of a thin magnetic film

l > 1 Mixing RD+KPZ



PDES Summary and outlook
• Simple DC model very useful
• The tools and methods of non-

equilibrium statistical physics (coarse-
graining, finite-size scaling, universality, 
etc.) can be applied to scalability 
modeling and algorithm engineering

• Conservative schemes can be made 
perfectly scalable (all short-ranged PDES)
• Computational phase always scalable (KPZ universality)
• Communication phase scalable with small-world network



Fully Scalable Computer Architectures
Main Paper

Shows ALL parallel discrete event simulations that are short-
ranged can be made to be perfectly scalable on the correct 
computer architecture.

US Patent

6,996,504

Issued Feb. 7, 2006

Novotny & Korniss

Large Paper

Guclu et al, PRE 2006



Discussion
Neither software nor hardware nor algorithms alone 

will lead to (non-trivial) perfect scalability

Without use of statistical mechanics, parallel 
computing will never be efficient/scalable

Similar ideas apply to (non-trivial) grid computing

Similar ideas for sensor networks

Similar ideas for databases and searches

Similar ideas for fault-tolerant computing
Similar ideas can be used to design new materials 

and devices with novel properties

and Provocations
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