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Informatics

From Wikipedia, the free encyclopedia

Not to be confused with Information science.

Informatics includes the science of information
and the practice of information processing.

Informatics studies the structure, behavior, and interactions of natural and artificial
systems that store, process and communicate information. It also develops its own
conceptual and theoretical foundations. Since computers, individuals and organizations
all process information, informatics has computational, cognitive and social aspects.
Used as a compound, in conjunction with the name of a discipline, as in medical
informatics, bio-informatics, etc., it denotes the specialization of informatics to the
management and processing of data, information and knowledge in the named
discipline.

Informatics should not be confused with information theory, the mathematical study of
the concept of information, or Library and information science a field related to libraries
and related information fields.
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Problem: no signal faster than speed of light
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computing on supercomputers requires parallel computing

Prediction: in 10 years almost all PCs will have >8 PEs
(Processing Elements)



BlueGene/L

System
(B4 cabinets, B4x32x32)
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Perfect Scalability

No- = # Processing Elements

Non-trivial parallelization

Amount of work O(Npg)

o
[Tl

» For large N, utilization independent of N

» For large N, PE memory independent of N

» Number of interconnects O(1) per PE




How Computational Physicists Count
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Complicated Behavior & Informatics

from Nonequilibrium Surface Growth Models
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Motivation for PDES model

Parallel computing



Non-equilibrium surface growth model: PDES model

-In(r)

O<r<1

Replenish
when
needed

Start with flat interface (in d dimensions)

In first step, all “drops’ fall



PDES model

-In(r)

O<r<1

Replenish
when
needed

For each step, all ‘drops’ fall ONLY 1f the
surface underneath 1s at a local minimum




PDES model

Note: at each step t all ‘drops’ fall
at the same time




PDES model




Discrete Event Simulations

* DES (Discrete Event Simulations)
* State changes are discontinuous
* Times of state changes are random

PDES

Parallel Discrete Event Simulations



PDES Technology Implications

- All today’s largest computers are massively parallel computers

« Must make good use of parallelization in programs for efficiency

« Parallel Discrete Event Simulations (PDES)
o Used in military simulations and training (‘what-if’ scenarios)
o Used in homeland security simulations and training
o Used in modeling of factory deliveries
o Used in modeling temporal drug concentrations in patient models
o Used in simulating materials and materials failure
o Used in modeling switching in cellular and wireless networks
o Used in ecological modeling
o Used in modeling epidemiological models

o Used in electric power grid simulations




Example:
Dynamic Monte Carlo of Ising spins
with nearest-neighbor interactions

Randomly pick a spin

Decide if spin will be flipped =~ Dynamic Monte Carlo simulations

Parallelization

o e
<3 Trivial (€3] :

Non-Trivial

<ol (€



Physical processes and logical processes

+
< w4333 k=5 il k=6
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Physical System —_— Computing System

spatially extended system of NL
spins, arranged on a lattice

Physical Events/Processes
random spin flipping

discrete event: the spin flip

L PEs: each carries N lattice
sites, N, of which are border sites

Logical Events/Processes
=——> each PE manages the state of the
assigned subsystem.

m=—>  discrete event: the state update



*Spatial decomposition on lattice/grid
(for systems with short-range interactions

only local synchronization between subsystems)
*Changes/updates: independent Poisson arrivals

*»Each subsystem/block of sites, carried by a

processing element (PE) must must have its
own local simulated time, {t;} (“virtual time”)

¢ Synchronization scheme | e S0
*»PEs must concurrently advance their own
Poisson streams, without violating causality

This IS the PDES model
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Coarse graining for the stochastic time

surface evolution
Korniss, Toroczkai, Novotny, Rikvold, PRL ‘00

T(t+ 1) =7(0) + 9()O[7,_1 (1) = (1) O] 73,1 (1) — 7(1) ]

*0(...) 1s the Heaviside step-function
*1;(t) 11d exponential random numbers

821 A=\ Kardar-Parisi-Zhang
5tr=a7—/1(&j +1(X,1) equation
B orY Steady state (d=1)
teaay state (0=1):
P[z(X)] oc exp| — E dX(&j Edwards-Wilkinson
- - Hamiltonian

“*Random-walk profile: short-range correlated local slopes



“Simulating the simulations”
s Universality/roughness (d=1)
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s Utilization/efficiency

Finite-size effects for the density of local minima/average growth rate
(steady state):
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Implications for scalability

Virtual Time Horizon belongs to KPZ universality class

GREAT News Bad News

- const.
*»*Simulation phase: scalable (U =), + | 20-a)

(U)., asymptotic average rate of progress of the
simulation (utilization ) is non-zero

“»Measurement (data management) phase: NOt scalable

|

IW <W2>L _ L2a



Quenched random (Small World
connections

United States Patent 6,996,504
Novotny, et al. February 7, 2006

Fully scalable computer architecture

A scalable computer architecture capable of performing fully scalable simulations includes a plurality of processing elements (PEs)
and a plurality of interconnections between the PEs. In this regard, the interconnections can interconnect each processing element to
each neighboring processing element located adjacent the respective processing element, and firther interconnect at least one
processing element to at least one other processing element located remote from the respective at least one processing element. For
example, the interconnections can interconnect the plurality of processing elements according to a fractal-type method or a quenched
random method. Further, the plurality of interconnections can include at least one interconnection at each length scale of the plurality
of processing elements.

Inventors:  Novetny; Mark A. (Starkville, MS); Korniss; Gyorgy (Latham, NY)
Assignee:  Mississippi State University (Mississippi State, MS)

Appl. No.: 990681

Filed: November 14, 2001

w=const.+Q(L") 7 <min{r,,7}
Slopes are still short-range correlated: non-zero (U)



Improve efficiency

Mixing
KPZ + RD

Oh(x,t) O?h(x,t) i lﬁh(:ﬁ,t)
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Simulation model for conservative PDES

Time-step t : index of the simultaneous update attempt
Updates at t : independent Poisson-random processes

If update att : h (t+1) =nh(t) + (1)

Update rule

k-1 k

k+1

! =
N=1 N=2

N>2

h.(t) <min{h,,(t), h.,,(t)} | | choose a neighbor

choose a lattice site

hk(t) = hnn(t)

v

v

interior

border

deposition at t < > update at t

local time increment dh

local height increment 5h |, .
\V4

hk(t) Shnn(t)

Virtual Time Horizon (VTH)

local height h_

20 40 60 80 100
site index k

Properties of the algorithm
are encoded in the VTH



Diagnostics: utilization of the parallel processing environment

Steady-state simulations
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Actual implementation

Dynamics of a thin magnetic film WOL_
Ixl, 1=128, Metropolis (Cruy T3E)

CO0O0O0000CC0000 080 | - *
010 O}ojj0io oio|lo 010
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000000000000 I=1 Ny, d=1)
010 00|00 00|®/0 00 020 1L (3 e de2)
OO Q0|00 21000 00
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1. Local time incremented .

Randomly chosen site
3. If chosen site 1s on the boundary,
PE must wait until t<min{rt,}

speed [10° MCS/s]

100

=128
purullel Metropolis

1 1 1 L 1 1
0 84 128 192 256 320 384

|>1 == Mixing RD+KPZ




PDES Summary and outlook

» Simple DC model very useful

* The tools and methods of non-
equilibrium statistical physics (coarse-
graining, finite-size scaling, universality,

etc.) can be applied to scalability
modeling and algorithm engineering

 Conservative schemes can be made
perfectly scalable (all short-ranged PDES)

« Computational phase always scalable (KPZ universality)
 Communication phase scalable with small-world network




Fully Scalable Computer

Suppressing Roughness of Virtual
Times in Parallel Discrete-Event
Simulations

G. Korniss,’ M. A, Novotny,” H. Guclu,’ Z, Toroczkal,?
P. A. Rikvold*

In a parallel discrete-event sinudation [PDES) scheme, tasks are distributed
amorng processing elements (PEs) whose progress is contrelled by a synchro-
nization schema. For lattice systems with short-ranga interactions. the progress
of the conservative PDES scheme is governed by the Kardar-Parisi-Zhang equa-
tion from the theory of nonequilibrium surface growth. Although the simulated

(wirtual) times of the PEs progress at a nonzero rate, their standard devi.

ion

{spread) diverges with the number of PEs, hindering efficient data collection We
show that weak random interactions among the PEs can make this spread
nondivergent. The PEs then progress at a nonzero, near-uniform rate without

requiring global synchronizations.

Simulating large systems often leaves the
programmer with only one option: parallel
mulations where parts of the

| aml simulated on differ-
sents (PEs). A
systems, melu

ble

, the
bles change at
: instants, synchronously or asynchro-
s of the
former is
ily). For

the lall\r that is, for asynchronous or non-
parallel dynamics—one must use some kind
of synchronization to ensure causality. The

instantaneous changes in the local configura-

3) s of PDES |]v|\|..|
tions |n\]mk dynamic channel .AII\\all\-n in
cell phone communication Tetwork
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US Patent
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Large Paper
Guclu et al, PRE 200

: A Gate-Controlled Bidirectional
= i Spin Filter Using Quantum
- [ Y Coherence

Shows ALL parallel discrete event simulations that are short-
ranged can be made to be perfectly scalable on the correct
computer architecture.



Discussion and Provocations

» Neither software nor hardware nor algorithms alone
will lead to (non-trivialy perfect scalability

» Without use of statistical mechanics, parallel
computing will never be efficient/scalable

» Similar ideas apply to (on-triviay grid computing
> Similar ideas for sensor networks

> Similar ideas for databases and sealj

> Similar ideas for fault-tolerant compu il

» Similar ideas can be used to design new materials
and devices with novel properties
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